1,083 research outputs found
Doubly connected minimal surfaces and extremal harmonic mappings
The concept of a conformal deformation has two natural extensions:
quasiconformal and harmonic mappings. Both classes do not preserve the
conformal type of the domain, however they cannot change it in an arbitrary
way. Doubly connected domains are where one first observes nontrivial conformal
invariants. Herbert Groetzsch and Johannes C. C. Nitsche addressed this issue
for quasiconformal and harmonic mappings, respectively. Combining these
concepts we obtain sharp estimates for quasiconformal harmonic mappings between
doubly connected domains. We then apply our results to the Cauchy problem for
minimal surfaces, also known as the Bjorling problem. Specifically, we obtain a
sharp estimate of the modulus of a doubly connected minimal surface that
evolves from its inner boundary with a given initial slope.Comment: 35 pages, 2 figures. Minor edits, references adde
"Forbidden" transitions between quantum Hall and insulating phases in p-SiGe heterostructures
We show that in dilute metallic p-SiGe heterostructures, magnetic field can
cause multiple quantum Hall-insulator-quantum Hall transitions. The insulating
states are observed between quantum Hall states with filling factors \nu=1 and
2 and, for the first time, between \nu=2 and 3 and between \nu=4 and 6. The
latter are in contradiction with the original global phase diagram for the
quantum Hall effect. We suggest that the application of a (perpendicular)
magnetic field induces insulating behavior in metallic p-SiGe heterostructures
in the same way as in Si MOSFETs. This insulator is then in competition with,
and interrupted by, integer quantum Hall states leading to the multiple
re-entrant transitions. The phase diagram which accounts for these transition
is similar to that previously obtained in Si MOSFETs thus confirming its
universal character
Experimental implementation of a NMR entanglement witness
Entanglement witnesses (EW) allow the detection of entanglement in a quantum
system, from the measurement of some few observables. They do not require the
complete determination of the quantum state, which is regarded as a main
advantage. On this paper it is experimentally analyzed an entanglement witness
recently proposed in the context of Nuclear Magnetic Resonance (NMR)
experiments to test it in some Bell-diagonal states. We also propose some
optimal entanglement witness for Bell-diagonal states. The efficiency of the
two types of EW's are compared to a measure of entanglement with tomographic
cost, the generalized robustness of entanglement. It is used a GRAPE algorithm
to produce an entangled state which is out of the detection region of the EW
for Bell-diagonal states. Upon relaxation, the results show that there is a
region in which both EW fails, whereas the generalized robustness still shows
entanglement, but with the entanglement witness proposed here with a better
performance
Universal behavior of localization of residue fluctuations in globular proteins
Localization properties of residue fluctuations in globular proteins are
studied theoretically by using the Gaussian network model. Participation ratio
for each residue fluctuation mode is calculated. It is found that the
relationship between participation ratio and frequency is similar for all
globular proteins, indicating a universal behavior in spite of their different
size, shape, and architecture.Comment: 4 pages, 3 figures. To appear in Phys. Rev.
On the construction of wear maps for Y-TZP dental ceramics in aqueous environments : pH, exposure time and impact angle effects
The purpose of this study was to test in-vitro the micro and nano tribological properties of Y-TZP (Yttria Tetragonal Zirconia Polycrystalline) material used in the construction of artificial teeth or dental crowns. The results showed that the effect of pH was to accelerate the wear rate of the Y-TZP material. However, this phenomenon was more apparent in acid than in alkaline environments. Wear maps were constructed based on the results identifying wastage regimes for the material in the erosion-corrosion conditions at a range of impact angles. In addition, a wear map was generated based on the transition from tetragonal to monoclininc phase for the material and the transition to high wear at various pHs and exposure times
The Effects of Disorder on the Quantum Hall State
A disorder-averaged Hartree-Fock treatment is used to compute the density of
single particle states for quantum Hall systems at filling factor . It
is found that transport and spin polarization experiments can be simultaneously
explained by a model of mostly short-range effective disorder. The slope of the
transport gap (due to quasiparticles) in parallel field emerges as a result of
the interplay between disorder-induced broadening and exchange, and has
implications for skyrmion localization.Comment: 4 pages, 3 eps figure
Characterization of novel components of the baculovirus per os infectivity factor complex
Baculovirus occlusion-derived virus (ODV) infects insect midgut cells under alkaline conditions, a process mediated by highly conserved per os infectivity factors (PIFs), P74 (PIF0), PIF1, PIF2, PIF3, PIF4, and PIF5 (ODV-E56). Previously, a multimolecular complex composed of PIF1, PIF2, PIF3, and P74 was identified which was proposed to play an essential role during ODV entry. Recently, more proteins have been identified that play important roles in ODV oral infectivity, including PIF4, PIF5, and SF58, which might work in concert with previously known PIFs to facilitate ODV infection. In order to understand the ODV entry mechanism, the identification of all components of the PIF complex is crucial. Hence, the aim of this study was to identify additional components of the PIF complex. Coimmunoprecipitation (CoIP) combined with proteomic analysis was used to identify the components of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) PIF complex. PIF4 and P95 (AC83) were identified as components of the PIF complex while PIF5 was not, and this was confirmed with blue native PAGE and a second CoIP. Deletion of the pif4 gene impaired complex formation, but deletion of pif5 did not. Differentially denaturing SDS-PAGE further revealed that PIF4 forms a stable complex with PIF1, PIF2, and PIF3. P95 and P74 are more loosely associated with this complex. Three other proteins, AC5, AC68, and AC108 (homologue of SF58), were also found by the proteomic analysis to be associated with the PIF complex. Finally the functional significance of the PIF protein interactions is discussed
New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation
(abridged) The heating mechanism at high densities during M dwarf flares is
poorly understood. Spectra of M dwarf flares in the optical and
near-ultraviolet wavelength regimes have revealed three continuum components
during the impulsive phase: 1) an energetically dominant blackbody component
with a color temperature of T 10,000 K in the blue-optical, 2) a smaller
amount of Balmer continuum emission in the near-ultraviolet at lambda 3646
Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer
lines. These properties are not reproduced by models that employ a typical
"solar-type" flare heating level in nonthermal electrons, and therefore our
understanding of these spectra is limited to a phenomenological interpretation.
We present a new 1D radiative-hydrodynamic model of an M dwarf flare from
precipitating nonthermal electrons with a large energy flux of erg
cm s. The simulation produces bright continuum emission from a
dense, hot chromospheric condensation. For the first time, the observed color
temperature and Balmer jump ratio are produced self-consistently in a
radiative-hydrodynamic flare model. We find that a T 10,000 K
blackbody-like continuum component and a small Balmer jump ratio result from
optically thick Balmer and Paschen recombination radiation, and thus the
properties of the flux spectrum are caused by blue light escaping over a larger
physical depth range compared to red and near-ultraviolet light. To model the
near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer
lines, we include the extra Balmer continuum opacity from Landau-Zener
transitions that result from merged, high order energy levels of hydrogen in a
dense, partially ionized atmosphere. This reveals a new diagnostic of ambient
charge density in the densest regions of the atmosphere that are heated during
dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar
Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015):
updated to include comments by Guest Editor. The final publication is
available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-
Thermodynamics of Charged Brans-Dicke AdS Black Holes
It is well-known that in four dimensions, black hole solution of the
Brans-Dikce-Maxwell equations is just the Reissner-Nordstrom solution with a
constant scalar field. However, in dimensions, the solution is not yet
the -dimensional Reissner-Nordstrom solution and the scalar field is not
a constant in general. In this paper, by applying a conformal transformation to
the dilaton gravity theory, we derive a class of black hole solutions in
-dimensional Brans-Dikce-Maxwell theory in the background of
anti-de Sitter universe. We obtain the conserved and thermodynamic quantities
through the use of the Euclidean action method. We find a Smarr-type formula
and perform a stability analysis in the canonical ensemble. We find that the
solution is thermally stable for small , while for large the
system has an unstable phase, where is a coupling constant between
the scalar and matter field.Comment: 14 pages, one figure, to appear in Phys. Lett.
Unveiling the operation mechanism of layered perovskite solar cells
Layered perovskites have been shown to improve the stability of perovskite solar cells while its operation mechanism remains unclear. Here we investigate the process for the conversion of light to electrical current in high performance layered perovskite solar cells by examining its real morphology. The layered perovskite films in this study are found to be a mixture of layered and three dimensional (3D)-like phases with phase separations at micrometer and nanometer scale in both vertical and lateral directions. This phase separation is explained by the surface initiated crystallization process and the competition of the crystallization between 3D-like and layered perovskites. We further propose that the working mechanisms of the layered perovskite solar cells involve energy transfer from layered to 3D-like perovskite network. The impact of morphology on efficiency and stability of the hot-cast layered perovskite solar cells are also discussed to provide guidelines for the future improvement
- …