24 research outputs found

    A phenomenological theory of zero-energy Andreev resonant states

    Full text link
    A conceptual consideration is given to a zero-energy state (ZES) at the surface of unconventional superconductors. The reflection coefficients in normal-metal / superconductor (NS) junctions are calculated based on a phenomenological description of the reflection processes of a quasiparticle. The phenomenological theory reveals the importance of the sign change in the pair potential for the formation of the ZES. The ZES is observed as the zero-bias conductance peak (ZBCP) in the differential conductance of NS junctions. The split of the ZBCP due to broken time-reversal symmetry states is naturally understood in the present theory. We also discuss effects of external magnetic fields on the ZBCP.Comment: 12 page

    Theory of charge transport in diffusive normal metal / unconventional singlet superconductor contacts

    Get PDF
    We analyze the transport properties of contacts between unconventional superconductor and normal diffusive metal in the framework of the extended circuit theory. We obtain a general boundary condition for the Keldysh-Nambu Green's functions at the interface that is valid for arbitrary transparencies of the interface. This allows us to investigate the voltage-dependent conductance (conductance spectrum) of a diffusive normal metal (DN)/ unconventional singlet superconductor junction in both ballistic and diffusive cases. For d-wave superconductor, we calculate conductance spectra numerically for different orientations of the junctions, resistances, Thouless energies in DN, and transparencies of the interface. We demonstrate that conductance spectra exhibit a variety of features including a VV-shaped gap-like structure, zero bias conductance peak (ZBCP) and zero bias conductance dip (ZBCD). We show that two distinct mechanisms: (i) coherent Andreev reflection (CAR) in DN and (ii) formation of midgap Andreev bound state (MABS) at the interface of d-wave superconductors, are responsible for ZBCP, their relative importance being dependent on the angle α\alpha between the interface normal and the crystal axis of d-wave superconductors. For α=0\alpha=0, the ZBCP is due to CAR in the junctions of low transparency with small Thouless energies, this is similar to the case of diffusive normal metal / insulator /s-wave superconductor junctions. With increase of α\alpha from zero to π/4\pi/4, the MABS contribution to ZBCP becomes more prominent and the effect of CAR is gradually suppressed. Such complex spectral features shall be observable in conductance spectra of realistic high-TcT_c junctions at very low temperature

    Immunoediting role for major vault protein in apoptotic signaling induced by bacterial N-acyl homoserine lactones

    Get PDF
    The major vault protein (MVP) mediates diverse cellular responses, including cancer cell resistance to chemotherapy and protection against inflammatory responses to Pseudomonas aeruginosa. Here, we report the use of photoactive probes to identify MVP as a target of the N-(3-oxo-dodecanoyl) homoserine lactone (C12), a quorum sensing signal of certain proteobacteria including P. aeruginosa. A treatment of normal and cancer cells with C12 or other N-acyl homoserine lactones (AHLs) results in rapid translocation of MVP into lipid raft (LR) membrane fractions. Like AHLs, inflammatory stimuli also induce LR-localization of MVP, but the C12 stimulation reprograms (functionalizes) bioactivity of the plasma membrane by recruiting death receptors, their apoptotic adaptors, and caspase-8 into LR. These functionalized membranes control AHL-induced signaling processes, in that MVP adjusts the protein kinase p38 pathway to attenuate programmed cell death. Since MVP is the structural core of large particles termed vaults, our findings suggest a mechanism in which MVP vaults act as sentinels that fine-tune inflammation-activated processes such as apoptotic signaling mediated by immunosurveillance cytokines including tumor necrosis factor-related apoptosis inducing ligand (TRAIL).Bio-organic Synthesi

    Measuring the finish of rough surfaces

    No full text

    Automatic Recognition of Machined Surfaces from a 3D Solid Model

    No full text
    It has been proposed that a direct link between CAD and CAM be provided through a computer-automated process planning system. Described in this paper are algorithmic procedures to identify machined surfaces (i.e. machining requirements) for a workpiece directly from its 3D geometric description. A machined surface is a portion of workpiece that can be generated by a certain mode of metal removal operation. Machined surfaces are algorithmically recognized from a 3D boundary file, and then their 2 1/2D descriptions are obtained in a data structure (format) suitable for an automated process planning system. A simplified boundary file data structure is introduced in order to explain the machined surface recognition procedures
    corecore