73 research outputs found

    Finite-size scaling analysis of the critical behavior of a general epidemic process in 2D

    Get PDF
    AbstractWe investigate the critical behavior of a stochastic lattice model describing a General Epidemic Process. By means of a Monte Carlo procedure, we simulate the model on a regular square lattice and follow the spreading of an epidemic process with immunization. A finite size scaling analysis is employed to determine the critical point as well as some critical exponents. We show that the usual scaling analysis of the order parameter moment ratio does not provide an accurate estimate of the critical point. Precise estimates of the critical quantities are obtained from data of the order parameter variation rate and its fluctuations. Our numerical results corroborate that this model belongs to the dynamic isotropic percolation universality class. We also check the validity of the hyperscaling relation and present data collapse curves which reinforce the accuracy of the estimated critical parameters

    Convergence of the critical attractor of dissipative maps: Log-periodic oscillations, fractality and nonextensivity

    Full text link
    For a family of logistic-like maps, we investigate the rate of convergence to the critical attractor when an ensemble of initial conditions is uniformly spread over the entire phase space. We found that the phase space volume occupied by the ensemble W(t) depicts a power-law decay with log-periodic oscillations reflecting the multifractal character of the critical attractor. We explore the parametric dependence of the power-law exponent and the amplitude of the log-periodic oscillations with the attractor's fractal dimension governed by the inflexion of the map near its extremal point. Further, we investigate the temporal evolution of W(t) for the circle map whose critical attractor is dense. In this case, we found W(t) to exhibit a rich pattern with a slow logarithmic decay of the lower bounds. These results are discussed in the context of nonextensive Tsallis entropies.Comment: 8 pages and 8 fig

    Universal renormalization-group dynamics at the onset of chaos in logistic maps and nonextensive statistical mechanics

    Full text link
    We uncover the dynamics at the chaos threshold μ\mu_{\infty} of the logistic map and find it consists of trajectories made of intertwined power laws that reproduce the entire period-doubling cascade that occurs for μ<μ\mu <\mu_{\infty}. We corroborate this structure analytically via the Feigenbaum renormalization group (RG) transformation and find that the sensitivity to initial conditions has precisely the form of a qq-exponential, of which we determine the qq-index and the qq-generalized Lyapunov coefficient λq\lambda _{q}. Our results are an unequivocal validation of the applicability of the non-extensive generalization of Boltzmann-Gibbs (BG) statistical mechanics to critical points of nonlinear maps.Comment: Revtex, 3 figures. Updated references and some general presentation improvements. To appear published as a Rapid communication of PR

    Two-dimensional maps at the edge of chaos: Numerical results for the Henon map

    Full text link
    The mixing properties (or sensitivity to initial conditions) of two-dimensional Henon map have been explored numerically at the edge of chaos. Three independent methods, which have been developed and used so far for the one-dimensional maps, have been used to accomplish this task. These methods are (i)measure of the divergence of initially nearby orbits, (ii)analysis of the multifractal spectrum and (iii)computation of nonextensive entropy increase rates. The obtained results strongly agree with those of the one-dimensional cases and constitute the first verification of this scenario in two-dimensional maps. This obviously makes the idea of weak chaos even more robust.Comment: 4 pages, 3 figure

    A recent appreciation of the singular dynamics at the edge of chaos

    Full text link
    We study the dynamics of iterates at the transition to chaos in the logistic map and find that it is constituted by an infinite family of Mori's qq-phase transitions. Starting from Feigenbaum's σ\sigma function for the diameters ratio, we determine the atypical weak sensitivity to initial conditions ξt\xi _{t} associated to each qq-phase transition and find that it obeys the form suggested by the Tsallis statistics. The specific values of the variable qq at which the qq-phase transitions take place are identified with the specific values for the Tsallis entropic index qq in the corresponding ξt\xi_{t}. We describe too the bifurcation gap induced by external noise and show that its properties exhibit the characteristic elements of glassy dynamics close to vitrification in supercooled liquids, e.g. two-step relaxation, aging and a relationship between relaxation time and entropy.Comment: Proceedings of: Verhulst 200 on Chaos, Brussels 16-18 September 2004, Springer Verlag, in pres

    Nonextensive Entropies derived from Form Invariance of Pseudoadditivity

    Full text link
    The form invariance of pseudoadditivity is shown to determine the structure of nonextensive entropies. Nonextensive entropy is defined as the appropriate expectation value of nonextensive information content, similar to the definition of Shannon entropy. Information content in a nonextensive system is obtained uniquely from generalized axioms by replacing the usual additivity with pseudoadditivity. The satisfaction of the form invariance of the pseudoadditivity of nonextensive entropy and its information content is found to require the normalization of nonextensive entropies. The proposed principle requires the same normalization as that derived in [A.K. Rajagopal and S. Abe, Phys. Rev. Lett. {\bf 83}, 1711 (1999)], but is simpler and establishes a basis for the systematic definition of various entropies in nonextensive systems.Comment: 16 pages, accepted for publication in Physical Review

    Charging Effects and Quantum Crossover in Granular Superconductors

    Full text link
    The effects of the charging energy in the superconducting transition of granular materials or Josephson junction arrays is investigated using a pseudospin one model. Within a mean-field renormalization-group approach, we obtain the phase diagram as a function of temperature and charging energy. In contrast to early treatments, we find no sign of a reentrant transition in agreement with more recent studies. A crossover line is identified in the non-superconducting side of the phase diagram and along which we expect to observe anomalies in the transport and thermodynamic properties. We also study a charge ordering phase, which can appear for large nearest neighbor Coulomb interaction, and show that it leads to first-order transitions at low temperatures. We argue that, in the presence of charge ordering, a non monotonic behavior with decreasing temperature is possible with a maximum in the resistance just before entering the superconducting phase.Comment: 15 pages plus 4 fig. appended, Revtex, INPE/LAS-00

    Spatial correlations in vote statistics: a diffusive field model for decision-making

    Full text link
    We study the statistics of turnout rates and results of the French elections since 1992. We find that the distribution of turnout rates across towns is surprisingly stable over time. The spatial correlation of the turnout rates, or of the fraction of winning votes, is found to decay logarithmically with the distance between towns. Based on these empirical observations and on the analogy with a two-dimensional random diffusion equation, we propose that individual decisions can be rationalised in terms of an underlying "cultural" field, that locally biases the decision of the population of a given region, on top of an idiosyncratic, town-dependent field, with short range correlations. Using symmetry considerations and a set of plausible assumptions, we suggest that this cultural field obeys a random diffusion equation.Comment: 18 pages, 5 figures; added sociophysics references

    Guillain-Barré syndrome related to Zika virus infection: A systematic review and meta-analysis of the clinical and electrophysiological phenotype

    Get PDF
    BACKGROUND: The Zika virus (ZIKV) has been associated with Guillain-Barré syndrome (GBS) in epidemiological studies. Whether ZIKV-associated GBS is related to a specific clinical or electrophysiological phenotype has not been established. To this end, we performed a systematic review and meta-analysis of all published s

    Bias driven coherent carrier dynamics in a two-dimensional aperiodic potential

    Get PDF
    We study the dynamics of an electron wave-packet in a two-dimensional square lattice with an aperiodic site potential in the presence of an external uniform electric field. The aperiodicity is described by ϵm=Vcos(παmxνx)cos(παmyνy)\epsilon_{\bf m} = V\cos{(\pi\alpha m_x^{\nu_x})}\cos{(\pi\alpha m_y^{\nu_y})} at lattice sites (mx,my)(m_x, m_y), with πα\pi \alpha being a rational number, and νx\nu_x and νy\nu_y tunable parameters, controlling the aperiodicity. Using an exact diagonalization procedure and a finite-size scaling analysis, we show that in the weakly aperiodic regime (νx,νy<1\nu_x,\nu_y < 1), a phase of extended states emerges in the center of the band at zero field giving support to a macroscopic conductivity in the thermodynamic limit. Turning on the field gives rise to Bloch oscillations of the electron wave-packet. The spectral density of these oscillations may display a double peak structure signaling the spatial anisotropy of the potential landscape. The frequency of the oscillations can be understood using a semi-classical approach.Comment: 16 pages, to appear in Phys. Lett.
    corecore