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a b s t r a c t

We investigate the critical behavior of a stochastic lattice model describing a General
Epidemic Process. By means of a Monte Carlo procedure, we simulate the model on a
regular square lattice and follow the spreading of an epidemic process with immunization.
A finite size scaling analysis is employed to determine the critical point as well as some
critical exponents.We show that the usual scaling analysis of the order parametermoment
ratio does not provide an accurate estimate of the critical point. Precise estimates of the
critical quantities are obtained from data of the order parameter variation rate and its
fluctuations. Our numerical results corroborate that this model belongs to the dynamic
isotropic percolation universality class. We also check the validity of the hyperscaling
relation and present data collapse curves which reinforce the accuracy of the estimated
critical parameters.

© 2010 Elsevier B.V.

1. Introduction

The study of non-equilibrium phase transitions is of central importance in the analysis of complex phenomena. The
contact process (CP) is one of the simplest models presenting a dynamic transition from an active state into an absorbing
state [1–4]. The CP is the prototype model for the directed percolation (DP) universality class. Given a D-dimensional
lattice, the CP considers each site being in either an active or inactive state. The inactive sites becomes active, with a given
probability, when it is neighbor of an active neighbor. The active state has a finite lifetime and, for sufficiently short lifetimes,
the whole system is driven to the absorbing state with only inactive sites. A stationary active state with a finite fraction of
sites in the active state is obtained above a critical lifetime. The influence of particle diffusion in the critical behavior of
absorbing state phase transitions has been a subject of growing interest, since analytical and numerical studies showed that
diffusion is an important mechanism that can influence the critical behavior [5–14]. In particular, strong deviations from
the directed percolation universality class have been recently reported for models with coupled diffusive and non-diffusive
fields [15–18].

In real systems, however, epidemic spreading is a much more complex phenomenon than that described by the contact
process. Individuals acquire immunization for their own protection and a realistic description of epidemic spreading should
include this aspect in the model. In Ref. [19] the process of mutation was introduced in order to study its effect in the
epidemic spreading with immunization. The case in which an individual acquires perfect immunization is known as a
General Epidemic Process (GEP). An individual can be infected and later on it is immunized. Once immunized it remains
in this state during the whole process and the disease can only spread to parts of the system that have not been infected
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before. In Ref. [20] a trial to simulate systems with immunization has been developed on a basis of real data. The authors
proposed a model that can serve as a basis for the development of other algorithms to simulate real epidemics. In the same
work, the authors also considered the strategy of population vaccination.

In this paper, we study the spreading of an epidemic whose critical behavior places the model in the DIP (Dynamic
Isotropic Percolation or GEP) universality class [21]. Our approach is the one based on stochastic spatially structuredmodels.
In the last years, a great number ofworks have shown the relevance of this kind of approach to describe biological population
problems [22–40]. We focus on the stochastic lattice model for a susceptible–infected–immunized system introduced by
Satulovsky and Tomé [24,25]. Thismodel exhibits a phase diagramwith an active phasewhere epidemic spreads indefinitely
and an inactive phase where the immunization process predominates and the epidemic spreading stops after reaching a
finite portion of the system. In order to find the critical properties of the model we perform Monte Carlo simulations and
we use finite size scaling analysis, which is employed to determine the critical point as well as some critical exponents. We
calculate the static critical exponents associated with the non-equilibrium phase transition from the active state into the
absorbing state. It is worthmentioning that some of the dynamic critical exponents associatedwith the synchronous version
of this model have already been obtained [35]. We determine a set of critical exponents which allows the classification of
the model’s universality class. We show that the cumulant technique does not provide an accurate procedure to directly
locate the critical point but we precisely locate the critical point using the derivative of density of immunized individuals
with respect to the control parameter.

The paper is structured as follows. In Section 2 we present the model and simulations. Section 3 presents our results and
Section 4 concludes.

2. Model and simulations

Let us consider amodel thatmimics the spreading of an epidemic process in a population.We denote by X the susceptible
individuals, that may get infected by contact with infected individuals Y . These can recover and become the immune
population Z . The model comprehends the following set of reactions:

X + Y
b

→ 2Y

Y
c

→ Z
(1)

which describe the acyclic process X → Y → Z .
The present model is defined on a regular square lattice where each site can be in one of the states: occupied by a

susceptible, an infected or an immune individual and they obey the stochastic rules that we will present. These rules are
basic for the relevant reactions that characterize a simple susceptible–infected–immune system. They are taken into account
here by considering the stochastic lattice model defined by an asynchronous global dynamics composed by the following
set of local Markovian rules:

(a) Infection may occur if a susceptible individual (X), which occupies a site, has at least one site occupied by an infected
individual (Y ) in its neighborhood, reaction X + Y

b
→ 2Y . The process occurs with probability b/4 times the number of

infected individuals in the neighbor sites. The infection rate b is a parameter related to infected individual proliferation and
it is divided by z = 4, where z is the lattice coordination number;

(b) In a site occupied by an infected individual (Y ), an immune individual (Z) can be born (recovering process) with
probability c (immunization rate) spontaneously, reaction Y

c
→ Z . In this reaction, there occurs an instantaneous

immunization process.
The condition b + c = 1 is obeyed, with b being the infection probability and c the immunization probability. This

model may exhibit infinitely many absorbing states and presents a continuous phase transition. The critical behavior will be
characterized by measuring a set of relevant static critical exponents obtained by the use of a finite size scaling analysis of
the critical order parameter and its relative fluctuation. In what follows, we show results from simulations on finite lattices
with N = L2 sites (L is the linear size). Each lattice sweep is considered as the time unit or one Monte Carlo Step (MCS). The
whole process is updated sequentially.We start from an initial conditionwith a single infected individual at the center of the
square lattice covered by susceptible individuals. Once the system is placed in the initial condition we apply the local rules
(a) and (b). An example of a configuration obtained by simulations is shown in Fig. 1. For high values (low c) of the infection
probability b (upper panel), the epidemic spreads leaving a cluster of inactive sites composed of immune individuals and
some groups of individuals that remain susceptible thereafter. Clusters grow with a front of infected individuals which
remains the border. Later the cluster assumes a limiting shape and spreads to infinity with a nonzero probability. When c is
increased (b is decreased) the threshold of the epidemic is reached (lower panel) and above this threshold, the epidemic will
stop leaving a cluster with a few immune individuals and the rest of the lattice covered with susceptible individuals. The
critical cluster presents an irregular shape of fractal nature. These clusters correspond to configurations where populations
of susceptible, infected and immunized under condition of low densities, are grouped into small clusters of each species and
they are isolated from each other. The system evolves in time and eventually reaches stationary states. The order parameter
is the density of immune individuals:

ρ0 =
⟨Nz⟩

N
.
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Fig. 1. Configurations at c = 0.15, t = 250 MCS (upper panel) and c = 0.22, t = 400 MCS (lower panel) for the spreading of the epidemic model
on a square lattice with N = 2002 sites. The figures were generated from a single infected individual located at the origin (center) of a lattice covered
by susceptible individuals. Infected individuals are in black, susceptible individuals are in white and immune sites are in gray. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Density of immune individuals ρ0 in the active state versus c for distinct linear lattice sizes L.

3. Results

In Fig. 2 we show the density of immune individuals ρ0, as a function of the spontaneous immunization probability c ,
as obtained from simulations on lattices of distinct sizes L = 15, 35, 65, 95, 125, 165, 205, 305. As L → ∞ a transition
from a state with nonzero density of immune individuals to the immunized absorbing takes place by increasing the values
of c . The values used in our simulations for c ranged from 0.195 up to 0.235 with step 0.005 (b is calculated by the relation
b + c = 1). A commonly used technique to locate the critical point explores the finite-size behavior of the ratio between
the second moment and the squared first moment of the order parameter. For the general epidemic process, it corresponds
to the ratio of moments of the average number of immunized individuals, defined as:

UL(c) =
⟨N2

Z ⟩

⟨NZ ⟩
2
. (2)

In the limit of large L, such a ratio of order parametermoments usually becomes independent of the system size at the critical
point, due to the fractal character of the active zone. However, this is not the case for the presentmodel, as we discuss below.
In Fig. 3(a), we plot UL(c) obtained from simulations performed in distinct lattice sizes. For the present class of absorbing
state phase transition that takes place at a propagation front, the relative fluctuation becomes independent of the system size
within the entire active phase, with finite size corrections at the critical point. This feature is directly related to the presence
of permanently immunized sites. They reduce the available area of susceptible sites, thus leaving the activity restricted to
occur at the fractal border of infected clusters evenwell within the active phase. Therefore, the cumulant technique does not
provide an accurate procedure to directly locate the critical point for the present class of critical phenomena. Alternatively,
we precisely locate the critical point by the use of the derivative of density of immunized individuals with respect to the
control parameter c as shown in Fig. 3(b). Further, we refine the critical recovery rate cc using the criteria of power-law size
dependence of the order parameter at the critical point.

Once having located the critical point, finite size scaling relations were used to compute the critical exponents
characterizing such a non-equilibrium phase transition. In particular, the order parameter obeys the power law ρ0(cc, L) ∝

L−β/ν , while its logarithmic derivative scales as ∂ ln ρ0(cc, L)/∂c ∝ L1/ν . These scaling laws are depicted in Figs. 4 and 5 from
which we estimate β/ν = 0.105(5) and ν = 1.32(2) for the square lattice.
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Fig. 3. (a) The moment ratio UL(c) as a function of the immunization rate c for distinct lattice sizes. From this figure, we (poorly) estimate the critical
immunization rate cc ≈ 0.217. (b) Derivative of density of immune individuals in relation to c. The curves reach a minimum at cc = 0.220(3) signalizing
the second order phase transition.

Fig. 4. Log–log plot of the order parameter versus the linear size L. From the best fit to a power-lawwe estimate the critical exponent ratio β/ν = 0.105(5)
for the square lattice.

Fig. 5. Log–log plot of the logarithmic derivative of the critical order parameter versus L. From the best fit to a power-lawwe estimate the critical exponent
ν = 1.32(2) for the square lattice.

In Fig. 6 we calculate the order parameter fluctuations

1ρ = N(⟨N2
Z ⟩ − ⟨NZ ⟩

2)

for the square lattice versus c for several lattice sizes. The data for the order parameter fluctuations at the critical point are
used in Fig. 7 to obtain the critical exponent ratio γ ′/ν since 1ρ ∝ Lγ ′/ν at the critical point cc = 0.220(3). In Fig. 8 we
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Fig. 6. Order parameter fluctuations 1ρ versus c for distinct linear lattice sizes L.

Fig. 7. Log–log plot of the order parameter fluctuations 1ρ versus L at the critical point. The exponent ratio γ ′/ν is estimated from the slope of the fitted
straight line from which we obtained γ ′/ν = 1.81(1).

Fig. 8. Data collapse of the order parameter density computed from different linear lattice sizes L and using cc = 0.220(3), β/ν = 0.105(5) and
ν = 1.32(2).

present data collapse of the order parameter density computed from different lattice sizes. Using cc = 0.220(3), the ratio of
critical exponents β/ν = 0.105(5) and the critical exponent ν = 1.32(2) are confirmed. We also present in Fig. 9, the data



1438 C. Argolo et al. / Physica A 390 (2011) 1433–1439

Table 1
Values of critical exponents β/ν, ν and γ ′/ν for the square lattice. For comparison we show the corresponding values for the 2D GEP.

β/ν ν γ ′/ν

Our model 0.105(5) 1.32(2) 1.81(1)
GEP-2D 0.104 1.33 1.795

Fig. 9. Data collapse of the order parameter density fluctuations computed from different linear lattice sizes L and using cc = 0.220(3), γ ′/ν = 1.81(1)
and ν = 1.32(2).

collapse of the order parameter density fluctuation computed from different lattice sizes. These are results for the square
lattice and using cc = 0.220(3). The exponents γ ′/ν = 1.81(1) and ν = 1.32(2) are estimated considering this critical
density. We point out that the uncertainty in the location of the critical point was taken into consideration in the estimate
of the error bars on the critical exponents.

Finally in Table 1 we present the values of β/ν, ν and γ ′/ν for the general epidemic process in the square lattice. The
values for GEP in 2D are shown at the end of the table for comparison. In this case of the square lattice the results are similar
to those of GEP. Our estimated value for γ ′/ν is consistent with the hyperscaling relation 2β/ν + γ ′/ν = 2 for the square
lattice.

4. Conclusions

We have investigated the critical behavior of a stochastic spatial structured model in which susceptible, infected and
immunized individuals reside on the sites of a square lattice and are described by discrete stochastic variables. From
numerical simulations of this irreversible model and using finite size scaling analysis, we computed some relevant critical
exponents governing this non-equilibrium phase transition. We have found that the cumulant technique based on an order
parameter moment ratio does not show the usual scale-invariance at the critical point observed in equilibrium phase
transition. This feature is due to the presence of permanent immunized sites. Given that the absorbing state phase transition
occurs at a fractal-like propagation front, the relative order parameter fluctuation becomes independent of the system size
in the entire active phase. Therefore the cumulant technique does not provide an accurate procedure to directly locate the
critical point.We provided an accurate estimate of the critical point using the derivative of density of immunized individuals
with respect to the control parameter. The critical exponents were determined from the finite-size scaling behavior of
the variation rate of the order parameter density at the critical point as well as from the scaling of the order parameter
fluctuation. The results are consistent with the predicted Dynamic Isotropic Percolation universality class [21].
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