1,127 research outputs found

    Relations between entanglement, Bell-inequality violation and teleportation fidelity for the two-qubit X states

    Full text link
    Based on the assumption that the receiver Bob can apply any unitary transformation, Horodecki {\it et al.} [Phys. Lett. A {\bf 222}, 21 (1996)] proved that any mixed two spin-1/2 state which violates the Bell-CHSH inequality is useful for teleportation. Here, we further show that any X state which violates the Bell-CHSH inequality can also be used for nonclassical teleportation even if Bob can only perform the identity or the Pauli rotation operations. Moreover, we showed that the maximal difference between the two average fidelities achievable via Bob's arbitrary transformations and via the sole identity or the Pauli rotation is 1/9.Comment: 5 pages, to be published in "Quantum Information Processing

    Management system for IPv6-enabled wireless sensor networks

    Get PDF
    “Copyright © [2011] IEEE. Reprinted from Internet of Things (iThings/CPSCom), 2011 International Conference on and 4th International Conference on Cyber, Physical and Social Computing. ISBN 978-1-4577-1976-9 This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”It is expected that in the near future smart objects will have an Internet connection – this is the Internet of Things vision. Most of these objects compatible with the IEEE 802.15.4 standard are characterized by small size, power constrains, and small computing resources. Connecting such devices to the Internet is considered simultaneously the biggest challenge and a great opportunity for the Internet growth. To achieve the Internet of things vision is necessary to support IPv6 protocol suite in all objects. Supporting IPv6 simplifies, simultaneously, the integration of these objects in the Internet and their management. Actually, despite of the relevance, there are no existing standard solutions to manage smart object networks. Managing this type of networks poses a unique challenge because smart object networks may be comprised of thousands of nodes, are highly dynamic and prone to failures. This paper presents a complete solution to manage smart object networks based on SNMPv1 protocol. The paper also presents the design and deployment of a laboratory testbed

    Out-of-equilibrium singlet-triplet Kondo effect in a single C_60 quantum dot

    Full text link
    We have used an electromigration technique to fabricate a C60\rm{C_{{60}}} single-molecule transistor (SMT). Besides describing our electromigration procedure, we focus and present an experimental study of a single molecule quantum dot containing an even number of electrons, revealing, for two different samples, a clear out-of-equilibrium Kondo effect. Low temperature magneto-transport studies are provided, which demonstrates a Zeeman splitting of the finite bias anomaly.Comment: 6 pages, 4 figure

    Computation of protein geometry and its applications: Packing and function prediction

    Full text link
    This chapter discusses geometric models of biomolecules and geometric constructs, including the union of ball model, the weigthed Voronoi diagram, the weighted Delaunay triangulation, and the alpha shapes. These geometric constructs enable fast and analytical computaton of shapes of biomoleculres (including features such as voids and pockets) and metric properties (such as area and volume). The algorithms of Delaunay triangulation, computation of voids and pockets, as well volume/area computation are also described. In addition, applications in packing analysis of protein structures and protein function prediction are also discussed.Comment: 32 pages, 9 figure

    Quasi-particle Lifetimes in a d_{x^2-y^2} Superconductor

    Full text link
    We consider the lifetime of quasi-particles in a d-wave superconductor due to scattering from antiferromagnetic spin-fluctuations, and explicitly separate the contribution from Umklapp processes which determines the electrical conductivity. Results for the temperature dependence of the total scattering rate and the Umklapp scattering rate are compared with relaxation rates obtained from thermal and microwave conductivity measurements, respectively.Comment: 14 pages, 4 figure

    Renormalization of the commutative scalar theory with harmonic term to all orders

    Full text link
    The noncommutative scalar theory with harmonic term (on the Moyal space) has a vanishing beta function. In this paper, we prove the renormalizability of the commutative scalar field theory with harmonic term to all orders by using multiscale analysis in the momentum space. Then, we consider and compute its one-loop beta function, as well as the one on the degenerate Moyal space. We can finally compare both to the vanishing beta function of the theory with harmonic term on the Moyal space.Comment: 16 page

    Pair Production of the Lightest Chargino via Gluon-Gluon Collisions

    Get PDF
    The production of the lightest chargino pair from gluon-gluon fusion is studied in the minimal supersymmetric model(MSSM) at proton-proton colliders. We find that with the chosen parameters, the production rate of the subprocess can be over 2.7 femto barn when the chargino is higgsino-like, and the corresponding total cross section in proton-proton collider can reach 56 femto barn at the LHC in the CP-conserving MSSM. It shows that this loop mediated subprocess can be competitive with the standard Drell-Yan subprocess in proton-proton colliders, especially at the LHC. Furthermore, our calculation shows it would be possible to extract information about some CP-violating phase parameters, if we collected enough chargino pair events.Comment: 39 pages, LaTex, 8 figure

    Formation of Nanopits in Si Capping Layers on SiGe Quantum Dots

    Get PDF
    In-situ annealing at a high temperature of 640°C was performed for a low temperature grown Si capping layer, which was grown at 300°C on SiGe self-assembled quantum dots with a thickness of 50 nm. Square nanopits, with a depth of about 8 nm and boundaries along 〈110〉, are formed in the Si capping layer after annealing. Cross-sectional transmission electron microscopy observation shows that each nanopit is located right over one dot with one to one correspondence. The detailed migration of Si atoms for the nanopit formation is revealed by in-situ annealing at a low temperature of 540°C. The final well-defined profiles of the nanopits indicate that both strain energy and surface energy play roles during the nanopit formation, and the nanopits are stable at 640°C. A subsequent growth of Ge on the nanopit-patterned surface results in the formation of SiGe quantum dot molecules around the nanopits

    Turbulence induced additional deceleration in relativistic shock wave propagation: implications for gamma-ray burst

    Full text link
    The late afterglow of gamma-ray burst is believed to be due to progressive deceleration of the forward shock wave driven by the gamma-ray burst ejecta propagating in the interstellar medium. We study the dynamic effect of interstellar turbulence on shock wave propagation. It is shown that the shock wave decelerates more quickly than previously assumed without the turbulence. As an observational consequence, an earlier jet break will appear in the light curve of the forward shock wave. The scatter of the jet-corrected energy release for gamma-ray burst, inferred from the jet-break, may be partly due to the physical uncertainties in the turbulence/shock wave interaction. This uncertainties also exist in two shell collisions in the well-known internal shock model proposed for gamma-ray burst prompt emission. The large scatters of known luminosity relations of gamma-ray burst may be intrinsic and thus gamma-ray burst is not a good standard candle. We also discuss the other implications.Comment: accepted for publication in Astrophysics and Space Scienc

    How control systems influence product innovation processes: examining the role of entrepreneurial orientation

    Get PDF
    This paper yields insights into the channels through which Management Accounting and Control Systems (MACS) exert an influence on product innovation by examining the extent to which different forms of control (i.e. value systems, diagnostic control systems, interactive control systems) are directly associated with the distinct phases of innovation processes. Using survey data collected from 118 medium and large Spanish companies, we find that: (1) value systems and interactive control systems have significant main effects on the creativity, coordination and knowledge integration, and filtering (sub-)phases of innovation processes; and (2) the significance and direction of these influences vary depending on the Entrepreneurial Orientation (EO) of firms. By highlighting the relevance of EO in shaping the influence of MACS on product innovation processes, this study calls for caution in generalising the expected effects of MACS on innovation
    • …
    corecore