1,310 research outputs found
Observed photodetachment in parallel electric and magnetic fields
We investigate photodetachment from negative ions in a homogeneous 1.0-T
magnetic field and a parallel electric field of approximately 10 V/cm. A
theoretical model for detachment in combined fields is presented. Calculations
show that a field of 10 V/cm or more should considerably diminish the Landau
structure in the detachment cross section. The ions are produced and stored in
a Penning ion trap and illuminated by a single-mode dye laser. We present
preliminary results for detachment from S- showing qualitative agreement with
the model. Future directions of the work are also discussed.Comment: Nine pages, five figures, minor revisions showing final publicatio
Birman-Wenzl-Murakami Algebra and the Topological Basis
In this paper, we use entangled states to construct 9x9-matrix
representations of Temperley-Lieb algebra (TLA), then a family of 9x9-matrix
representations of Birman-Wenzl-Murakami algebra (BWMA) have been presented.
Based on which, three topological basis states have been found. And we apply
topological basis states to recast nine-dimensional BWMA into its
three-dimensional counterpart. Finally, we find the topological basis states
are spin singlet states in special case.Comment: 11pages, 1 figur
Contribution of forbidden orbits in the photoabsorption spectra of atoms and molecules in a magnetic field
In a previous work [Phys. Rev. A \textbf{66}, 0134XX (2002)] we noted a
partial disagreement between quantum R-matrix and semiclassical calculations of
photoabsorption spectra of molecules in a magnetic field. We show this
disagreement is due to a non-vanishing contribution of processes which are
forbidden according to the usual semiclassical formalism. Formulas to include
these processes are obtained by using a refined stationary phase approximation.
The resulting higher order in contributions also account for previously
unexplained ``recurrences without closed-orbits''. Quantum and semiclassical
photoabsorption spectra for Rydberg atoms and molecules in a magnetic field are
calculated and compared to assess the validity of the first-order forbidden
orbit contributions.Comment: 12 pages, 6 figure
Observation of diffractive orbits in the spectrum of excited NO in a magnetic field
We investigate the experimental spectra of excited NO molecules in the
diamagnetic regime and develop a quantitative semiclassical framework to
account for the results. We show the dynamics can be interpreted in terms of
classical orbits provided that in addition to the geometric orbits, diffractive
effects are appropriately taken into account. We also show how individual
orbits can be extracted from the experimental signal and use this procedure to
reveal the first experimental manifestation of inelastic diffractive orbits.Comment: 4 fig
Semiclassical evaluation of average nuclear one and two body matrix elements
Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged
on the energy shell, on the basis of independent particle Hamiltonians. One-
and two-body matrix elements are compared with the quantal results and it is
demonstrated that the semiclassical matrix elements, as function of energy,
well pass through the average of the scattered quantum values. For the one-body
matrix elements it is shown how the Thomas-Fermi approach can be projected on
good parity and also on good angular momentum. For the two-body case the
pairing matrix elements are considered explicitly.Comment: 15 pages, REVTeX, 6 ps figures; changed conten
Observation of Two New N* Peaks in J/psi -> and Decays
The system in decays of is limited to be
isospin 1/2 by isospin conservation. This provides a big advantage in studying
compared with and experiments which mix
isospin 1/2 and 3/2 for the system. Using 58 million decays
collected with the Beijing Electron Positron Collider, more than 100 thousand
events are obtained. Besides two well known
peaks at 1500 MeV and 1670 MeV, there are two new, clear peaks in
the invariant mass spectrum around 1360 MeV and 2030 MeV. They are the
first direct observation of the peak and a long-sought "missing"
peak above 2 GeV in the invariant mass spectrum. A simple
Breit-Wigner fit gives the mass and width for the peak as MeV and MeV, and for the new peak above 2 GeV
as MeV and MeV, respectively
Classical approach in quantum physics
The application of a classical approach to various quantum problems - the
secular perturbation approach to quantization of a hydrogen atom in external
fields and a helium atom, the adiabatic switching method for calculation of a
semiclassical spectrum of hydrogen atom in crossed electric and magnetic
fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's
approach to Stark problem, long-lived excited states of a helium atom recently
discovered with the help of Poincar section, inelastic
transitions in slow and fast electron-atom and ion-atom collisions - is
reviewed. Further, a classical representation in quantum theory is discussed.
In this representation the quantum states are treating as an ensemble of
classical states. This approach opens the way to an accurate description of the
initial and final states in classical trajectory Monte Carlo (CTMC) method and
a purely classical explanation of tunneling phenomenon. The general aspects of
the structure of the semiclassical series such as renormgroup symmetry,
criterion of accuracy and so on are reviewed as well. In conclusion, the
relation between quantum theory, classical physics and measurement is
discussed.Comment: This review paper was rejected from J.Phys.A with referee's comment
"The author has made many worthwhile contributions to semiclassical physics,
but this article does not meet the standard for a topical review"
Phase transition in the transverse Ising model using the extended coupled-cluster method
The phase transition present in the linear-chain and square-lattice cases of
the transverse Ising model is examined. The extended coupled cluster method
(ECCM) can describe both sides of the phase transition with a unified approach.
The correlation length and the excitation energy are determined. We demonstrate
the ability of the ECCM to use both the weak- and the strong-coupling starting
state in a unified approach for the study of critical behavior.Comment: 10 pages, 7 eps-figure
Semiclassical quantization of the hydrogen atom in crossed electric and magnetic fields
The S-matrix theory formulation of closed-orbit theory recently proposed by
Granger and Greene is extended to atoms in crossed electric and magnetic
fields. We then present a semiclassical quantization of the hydrogen atom in
crossed fields, which succeeds in resolving individual lines in the spectrum,
but is restricted to the strongest lines of each n-manifold. By means of a
detailed semiclassical analysis of the quantum spectrum, we demonstrate that it
is the abundance of bifurcations of closed orbits that precludes the resolution
of finer details. They necessitate the inclusion of uniform semiclassical
approximations into the quantization process. Uniform approximations for the
generic types of closed-orbit bifurcation are derived, and a general method for
including them in a high-resolution semiclassical quantization is devised
Pair Production of the Lightest Chargino via Gluon-Gluon Collisions
The production of the lightest chargino pair from gluon-gluon fusion is
studied in the minimal supersymmetric model(MSSM) at proton-proton colliders.
We find that with the chosen parameters, the production rate of the subprocess
can be over 2.7 femto barn when the chargino is higgsino-like, and the
corresponding total cross section in proton-proton collider can reach 56 femto
barn at the LHC in the CP-conserving MSSM. It shows that this loop mediated
subprocess can be competitive with the standard Drell-Yan subprocess in
proton-proton colliders, especially at the LHC. Furthermore, our calculation
shows it would be possible to extract information about some CP-violating phase
parameters, if we collected enough chargino pair events.Comment: 39 pages, LaTex, 8 figure
- …
