31 research outputs found

    Deficient myocardial organization and pathological fibrosis in fetal aortic stenosis-association of prenatal ultrasound with postmortem histology

    Get PDF
    In fetal aortic stenosis (AS), it remains challenging to predict left ventricular development over the course of pregnancy. Myocardial organization, differentiation and fibrosis could be potential biomarkers relevant for biventricular outcome. We present four cases of fetal AS with varying degrees of severity and associate myocardial deformation on fetal ultrasound with postmortem histopathological characteristics. During routine fetal echocardiography, speckle tracking recordings of the cardiac four-chamber view were performed to assess myocardial strain as parameter for myocardial deformation. After pregnancy termination, postmortem cardiac specimens were examined using immunohistochemical labeling (IHC) of key markers for myocardial organization, differentiation and fibrosis and compared to normal fetal hearts. Two cases with critical AS presented extremely decreased left ventricular (LV) strain on fetal ultrasound. IHC showed overt endocardial fibro-elastosis, which correlated with pathological fibrosis patterns in the myocardium and extremely disturbed cardiomyocyte organization. The LV in severe AS showed mildly reduced myocardial strain and less severe disorganization of the cardiomyocytes. In conclusion, the degree of reduction in myocardial deformation corresponded with high extent to the amount of pathological fibrosis patterns and cardiomyocyte disorganization. Myocardial deformation on fetal ultrasound seems to hold promise as a potential biomarker for left ventricular structural damage in AS.Developmen

    Balancing end-to-end budgets of the Georges Bank ecosystem

    Get PDF
    Author Posting. © Elsevier, 2007. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Progress In Oceanography 74 (2007): 423-448, doi:10.1016/j.pocean.2007.05.003.Oceanographic regimes on the continental shelf display a great range in the time scales of physical exchange, biochemical processes and trophic transfers. The close surface-to-seabed physical coupling at intermediate scales of weeks to months means that the open ocean simplification to a purely pelagic food web is inadequate. Top-down trophic depictions, starting from the fish populations, are insufficient to constrain a system involving extensive nutrient recycling at lower trophic levels and subject to physical forcing as well as fishing. These pelagic-benthic interactions are found on all continental shelves but are particularly important on the relatively shallow Georges Bank in the northwest Atlantic. We have generated budgets for the lower food web for three physical regimes (well mixed, transitional and stratified) and for three seasons (spring, summer and fall/winter). The calculations show that vertical mixing and lateral exchange between the three regimes are important for zooplankton production as well as for nutrient input. Benthic suspension feeders are an additional critical pathway for transfers to higher trophic levels. Estimates of production by mesozooplankton, benthic suspension feeders and deposit feeders, derived primarily from data collected during the GLOBEC years of 1995-1999, provide input to an upper food web. Diets of commercial fish populations are used to calculate food requirements in three fish categories, planktivores, benthivores and piscivores, for four decades, 1963-2002, between which there were major changes in the fish communities. Comparisons of inputs from the lower web with fish energetic requirements for plankton and benthos indicate that we obtained reasonable agreement for the last three decades, 1973 to 2002. However, for the first decade, the fish food requirements were significantly less than the inputs. This decade, 1963-1972, corresponds to a period characterized by a strong Labrador Current and lower nitrate levels at the shelf edge, demonstrating how strong bottom-up physical forcing may determine overall fish yields.The research was done under the aegis of the U.S.-GLOBEC Northwest Atlantic Georges Bank Study, a program sponsored jointly by the U.S. National Science Foundation and the U.S. National Oceanic and Atmospheric Administration. We acknowledge NOAA-CICOR award NA17RJ1233 (J.H. Steele), NSF awards OCE0217399 (D.J. Gifford), OCE0217122 (J.J. Bisagni) and OCE0217257 (M.E. Sieracki). W.T. Stockhausen was supported by the NOAA Sponsored Coastal Ocean Research Program
    corecore