12 research outputs found

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    14 p.Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change

    A new pressure relaxation closure model for one-dimensional two-material Lagrangian hydrodynamics

    No full text
    We present a new model for closing a system of Lagrangian hydrodynamics equations for a two-material cell with a single velocity model. We describe a new approach that is motivated by earlier work of Delov and Sadchikov and of Goncharov and Yanilkin. Using a linearized Riemann problem to initialize volume fraction changes, we require that each material satisfy its own p dV equation, which breaks the overall energy balance in the mixed cell. To enforce this balance, we redistribute the energy discrepancy by assuming that the corresponding pressure change in each material is equal. This multiple-material model is packaged as part of a two-step time integration scheme. We compare results of our approach with other models and with corresponding pure-material calculations, on two-material test problems with ideal-gas or stiffened-gas equations of state

    Development of a sub-scale dynamics model for pressure relaxation of multi-material cells in Lagrangian hydrodynamics

    No full text
    We have extended the Sub-Scale Dynamics (SSD) closure model for multi-fluid computational cells. Volume exchange between two materials is based on the interface area and a notional interface translation velocity, which is derived from a linearized Riemann solution. We have extended the model to cells with any number of materials, computing pressure-difference-driven volume and energy exchange as the algebraic sum of pairwise interactions. In multiple dimensions, we rely on interface reconstruction to provide interface areas and orientations, and centroids of material polygons. In order to prevent unphysically large or unmanageably small material volumes, we have used a flux-corrected transport (FCT) approach to limit the pressure-driven part of the volume exchange. We describe the implementation of this model in two dimensions in the FLAG hydrodynamics code. We also report on Lagrangian test calculations, comparing them with others made using a mixed-zone closure model due to Tipton, and with corresponding calculations made with only single-material cells. We find that in some cases, the SSD model more accurately predicts the state of material in mixed cells. By comparing the algebraic forms of both models, we identify similar dependencies on state and dynamical variables, and propose explanations for the apparent higher fidelity of the SSD model
    corecore