32 research outputs found

    Improved diet quality and nutrient adequacy in children and adolescents with abdominal obesity after a lifestyle intervention

    Get PDF
    High rates of childhood obesity require integral treatment with lifestyle modifications that achieve weight loss. We evaluated a lifestyle intervention on nutrient adequacy and diet quality in children and adolescents with abdominal obesity. A randomized controlled trial was performed on 107 participants, assigned either to a usual care group or to an intensive care group that followed a moderate hypocaloric Mediterranean diet and received nutritional education. Intake adequacy was evaluated using Dietary Reference Intakes and diet quality through the Diet Quality Index for Adolescents (DQI-A), the Healthy Lifestyle Diet-Index (HLD-I) and the Mediterranean Diet Quality Index (KIDMED). Both groups achieved a significant reduction in BMI standard deviation score (BMI-SDS), glucose and total cholesterol levels. Intake of Calcium, Iodine and vitamin D were higher in the intensive care group, with enhanced compliance with recommendations. Higher dietary scores were associated with lower micronutrient inadequacy. DQI-A and HLD-I were significantly higher in the intensive care group vs. usual care group after the treatment. In conclusion, we observed that an intensive lifestyle intervention was able to reduce BMI-SDS in children with abdominal obesity. Furthermore, participants significantly improved dietary indices getting closer to the nutritional recommendations. Therefore, these diet quality indices could be a valid indicator to evaluate micronutrient adequacy.High rates of childhood obesity require integral treatment with lifestyle modifications that achieve weight loss. We evaluated a lifestyle intervention on nutrient adequacy and diet quality in children and adolescents with abdominal obesity. A randomized controlled trial was performed on 107 participants, assigned either to a usual care group or to an intensive care group that followed a moderate hypocaloric Mediterranean diet and received nutritional education. Intake adequacy was evaluated using Dietary Reference Intakes and diet quality through the Diet Quality Index for Adolescents (DQI-A), the Healthy Lifestyle Diet-Index (HLD-I) and the Mediterranean Diet Quality Index (KIDMED). Both groups achieved a significant reduction in BMI standard deviation score (BMI-SDS), glucose and total cholesterol levels. Intake of Calcium, Iodine and vitamin D were higher in the intensive care group, with enhanced compliance with recommendations. Higher dietary scores were associated with lower micronutrient inadequacy. DQI-A and HLD-I were significantly higher in the intensive care group vs. usual care group after the treatment. In conclusion, we observed that an intensive lifestyle intervention was able to reduce BMI-SDS in children with abdominal obesity. Furthermore, participants significantly improved dietary indices getting closer to the nutritional recommendations. Therefore, these diet quality indices could be a valid indicator to evaluate micronutrient adequacy

    Ground-based and JWST Observations of SN 2022pul. II. Evidence from nebular spectroscopy for a violent merger in a peculiar type Ia supernova

    Get PDF
    We present an analysis of ground-based and JWST observations of SN 2022pul, a peculiar "03fg-like" (or "super-Chandrasekhar") Type Ia supernova (SN Ia), in the nebular phase at 338 days postexplosion. Our combined spectrum continuously covers 0.4–14 ÎŒm and includes the first mid-infrared spectrum of a 03fg-like SN Ia. Compared to normal SN Ia 2021aefx, SN 2022pul exhibits a lower mean ionization state, asymmetric emission-line profiles, stronger emission from the intermediate-mass elements (IMEs) argon and calcium, weaker emission from iron-group elements (IGEs), and the first unambiguous detection of neon in a SN Ia. A strong, broad, centrally peaked [Ne ii] line at 12.81 ÎŒm was previously predicted as a hallmark of "violent merger" SN Ia models, where dynamical interaction between two sub-MCh white dwarfs (WDs) causes disruption of the lower-mass WD and detonation of the other. The violent merger scenario was already a leading hypothesis for 03fg-like SNe Ia; in SN 2022pul it can explain the large-scale ejecta asymmetries seen between the IMEs and IGEs and the central location of narrow oxygen and broad neon. We modify extant models to add clumping of the ejecta to reproduce the optical iron emission better, and add mass in the innermost region (<2000 km s−1) to account for the observed narrow [O i] λλ6300, 6364 emission. A violent WD–WD merger explains many of the observations of SN 2022pul, and our results favor this model interpretation for the subclass of 03fg-like SNe Ia
    corecore