99 research outputs found

    Bone Density and Cross-sectional Geometry of the Proximal Femur Are Bilaterally Elevated in Elite Cricket Fast Bowlers

    Get PDF
    The skeleton of a cricket fast bowler is exposed to a unique combination of gravitational and torsional loading in the form of substantial ground reaction forces delivered through the front landing foot, and anterior-posterior shear forces mediated by regional muscle contractions across the lumbo-pelvic region. The objectives of this study were to compare the hip structural characteristics of elite fast bowlers with recreationally active age-matched controls, and to examine unilateral bone properties in fast bowlers. Dual-energy X-ray absorptiometry of the proximal femur was performed in 26 elite male fast bowlers and 26 normally active controls. Hip structural analysis (GE Lunar; enCORE version 15.0) determined areal bone mineral density (BMD) of the proximal femur, and cross-sectional area, section modulus (Z), cross-sectional moment of inertia, and femoral strength index at the narrow region of the femoral neck. Mean femoral neck and trochanter BMD were greater in fast bowlers than in controls (p  0.05). Elite fast bowlers have superior bone characteristics of the proximal femur, with results inferring enhanced resistance to axial compression (cross-sectional area), and bending (Z) forces, and enhanced strength to withstand a fall impact as indicated by their higher femoral strength index. No asymmetries in hip bone properties were identified, suggesting that both torsional and gravitational loading offer significant osteogenic potential

    Synthesis and cellular penetration properties of new phosphonium based cationic amphiphilic peptides

    Get PDF
    A new category of phosphonium based cationic amphiphilic peptides has been developed and evaluated as potential antimicrobial peptides and cell penetrating peptides. The required building blocks were conveniently accessible from cysteine and could be applied in a solid phase peptide synthesis protocol for incorporation into peptide sequences. Evaluation of the antimicrobial properties and cellular toxicity of these phosphonium based peptides showed that these “soft” cationic side-chain containing peptides have poor antimicrobial properties and most of them were virtually non toxic (on HEK cells tested at 256 and 512 μM) and non-haemolytic (on horse erythrocytes tested at 512 μM), hinting at an interesting potential application as cell penetrating peptides. This possibility was evaluated using fluorescent peptide derivatives and showed that these phosphonium based peptide derivatives were capable of entering HEK cells and depending on the sequence confined to specific cellular areas

    Potent and highly selective inhibitors of the proteasome trypsin-like site by incorporation of basic side chain containing amino acid derived sulfonyl fluorides

    Get PDF
    A unique category of basic side chain containing amino acid derived sulfonyl fluorides (SFs) has been synthesized for incorporation into new proteasome inhibitors targeting the trypsin-like site of the 20S proteasome. Masking the former α-amino functionality of the amino acid starting derivatives as an azido functionality allowed an elegant conversion to the corresponding amino acid derived sulfonyl fluorides. The inclusion of different SFs at the P1 site of a proteasome inhibitor resulted in 14 different peptidosulfonyl fluorides (PSFs) having a high potency and an excellent selectivity for the proteolytic activity of the β2 subunit over that of the β5 subunit. The results of this study strongly indicate that a free N-terminus of PSFs inhibitors is crucial for high selectivity toward the trypsin-like site of the 20S proteasome. Nevertheless, all compounds are slightly more selective for inhibition of the constitutive over the immunoproteasome

    Demonstrating the Source of Inherent Instability in NiFe LDH Based OER Electrocatalysts

    Get PDF
    Nickel iron layered double hydroxides are known to be one of the most highly active catalysts for the oxygen evolution reaction in alkaline conditions. The high electrocatalytic activity of the material however cannot be sustained within the active voltage window on timescales consistent with commercial requirements. The goal of this work is to identify and prove the source of inherent catalyst instability by tracking changes in the material during OER activity. By combining in situ and ex situ Raman analyses we elucidate long term effects on the catalyst performance from a changing crystallographic phase. In particular, we attribute electrochemically stimulated compositional degradation at active sites as the principal cause of the sharp loss of activity from NiFe LDHs shortly after the alkaline cell is turned on. EDX, XPS, and EELS analyses performed after OER also reveal noticeable leaching of Fe metals compared to Ni, principally from highly active edge sites. In addition, post cycle analysis identified a ferrihydrite by product formed from the leached Fe. Density functional theory calculations shed light on the thermodynamic driving force for the leaching of Fe metals and propose a dissolution pathway which involves [FeO4]2 amp; 8722; removal at relevant OER potential

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Irish cardiac society - Proceedings of annual general meeting held 20th & 21st November 1992 in Dublin Castle

    Get PDF

    Personnel management without personnel

    No full text
    • …
    corecore