86 research outputs found

    Kirchhoff's Loop Law and the maximum entropy production principle

    Full text link
    In contrast to the standard derivation of Kirchhoff's loop law, which invokes electric potential, we show, for the linear planar electric network in a stationary state at the fixed temperature,that loop law can be derived from the maximum entropy production principle. This means that the currents in network branches are distributed in such a way as to achieve the state of maximum entropy production.Comment: revtex4, 5 pages, 2 figure

    Impurity induced resonant state in a pseudogap state of a high temperature superconductor

    Full text link
    We predict a resonance impurity state generated by the substitution of one Cu atom with a nonmagnetic atom, such as Zn, in the pseudogap state of a high-T_c superconductor. The precise microscopic origin of the pseudogap is not important for this state to be formed, in particular this resonance will be present even in the absence of superconducting fluctuations in the normal state. In the presence of superconducting fluctuations, we predict the existence of a counterpart impurity peak on a symmetric bias. The nature of impurity resonance is similar to the previously studied resonance in the d-wave superconducting state.Comment: 4 pages, 2 figure

    Slewing Mirror Telescope and the Data-Acquisition System for the UFFO-Pathfinder

    Get PDF
    The Ultra-Fast Flash Observatory (UFFO) aims to detect the earliest moment of Gamma-Ray Bursts (GRBs) which is not well known, resulting into the enhancement of GRB mechanism understanding. The pathfinder mission was proposed to be a scaled-down version of UFFO, and only contains the UFFO Burst Alert & Trigger Telescope (UBAT) measuring the X-ray/gamma-ray with the wide-field of view and the Slewing Mirror Telescope (SMT) with a rapid-response for the UV/optical photons. Once the UBAT detects a GRB candidate with the position accuracy of 10 arcmin, the SMT steers the UV/optical photons from the candidate to the telescope by the fast rotatable mirror and provides the early UV/optical photons measurements with 4 arcsec accuracy. The SMT has a modified Ritchey-Chrètien telescope with the aperture size of 10 cm diameter including the rotatable mirror and the image readout by the intensified charge-coupled device. There is a key board called the UFFO Data Acquisition system (UDAQ) that manages the communication of each telescope and also of the satellite and the UFFO overall operation. This pathfinder is designed and built within the limited size and weight of  ~20 kg and the low power consumption up to  ~30 W. We will discuss the design and performance of the UFFO-pathfinder, and its integration to the Lomonosov satellite

    Design and implementation of electronics and data acquisition system for Ultra-Fast Flash Observatory

    Get PDF
    The Ultra-Fast Flash Observatory (UFFO) Pathfinder for Gamma-Ray Bursts (GRBs) consists of two telescopes. The UFFO Burst Alert & Trigger Telescope (UBAT) handles the detection and localization of GRBs, and the Slewing Mirror Telescope (SMT) conducts the measurement of the UV/optical afterglow. UBAT is equipped with an X-ray detector, analog and digital signal readout electronics that detects X-rays from GRBs and determines the location. SMT is equipped with a stepping motor and the associated electronics to rotate the slewing mirror targeting the GRBs identified by UBAT. First the slewing mirror points to a GRB, then SMT obtains the optical image of the GRB using the intensified CCD and its readout electronics. The UFFO Data Acquisition system (UDAQ) is responsible for the overall function and operation of the observatory and the communication with the satellite main processor. In this paper we present the design and implementation of the electronics of UBAT and SMT as well as the architecture and implementation of UDAQ

    Calibration and Simulation of the GRB trigger detector of the Ultra Fast Flash Observatory

    Get PDF
    The UFFO (Ultra-Fast Flash Observatory) is a GRB detector on board the Lomonosov satellite, to be launched in 2013. The GRB trigger is provided by an X-ray detector, called UBAT (UFFO Burst Alarm & Trigger Telescope), which detects X-rays from the GRB and then triggers to determine the direction of the GRB and then alerts the Slewing Mirror Telescope (SMT) to turn in the direction of the GRB and record the optical photon fluxes. This report details the calibration of the two components: the MAPMTs and the YSO crystals and simulations of the UBAT. The results shows that this design can observe a GRB within a field of view of ±35° and can trigger in a time scale as short as 0.2 – 1.0 s after the appearance of a GRB X-ray spike

    Development of Motorized Slewing Mirror Stage for the UFFO Project

    Get PDF
    The Ultra-Fast Flash Observatory (UFFO) is a space observatory for optical follow-ups of gamma ray bursts (GRBs), aiming to explore the first 60 seconds of GRBs optical emission. UFFO is utilized to catch early optical emissions from GRBs within few sec after trigger using a Gimbal mirror which redirects the optical path rather than slewing entire spacecraft. We have developed a 15 cm two-axis Gimbal mirror stage for the UFFO-Pathfinder which is going to be on board the Lomonosov satellite which is to be launched in 2013. The stage is designed for fast and accurate motion with given budgets of 3 kg of mass and 3 Watt of power. By employing stepping motors, the slewing mirror can rotate faster than 15 deg/sec so that objects in the UFFO coverage (60 deg × 60 deg) can be targeted in ~1 sec. The obtained targeting resolution is better 2 arcmin using a close-loop control with high precision rotary encoder. In this presentation, we will discuss details of design, manufacturing, space qualification tests, as well as performance tests

    In-Flight Calibrations of UFFO-Pathfinder

    Get PDF
    The Ultra-Fast Flash Observatory (UFFO), which will be launched onboard the Lomonosov spacecraft, contains two crucial instruments: UFFO Burst Alert & Trigger Telescope (UBAT) for detection and localization of Gamma-Ray Bursts (GRBs) and the fast-response Slewing Mirror Telescope (SMT) designed for the observation of the prompt optical/UV counterparts. Here we discuss the in-space calibrations of the UBAT detector and SMT telescope. After the launch, the observations of the standard X-ray sources such as pulsar in Crab nebula will provide data for necessary calibrations of UBAT. Several standard stars will be used for the photometric calibration of SMT. The celestial X-ray sources, e.g. X-ray binaries with bright optical sources in their close angular vicinity will serve for the cross-calibration of UBAT and SMT

    Ultra-Fast Flash Observatory: Fast Response Space Missions for Early Time Phase of Gamma Ray Bursts

    Get PDF
    One of the unexplored domains in the study of gamma-ray bursts (GRBs) is the early time phase of the optical light curve. We have proposed Ultra-Fast Flash Observatory (UFFO) to address this question through extraordinary opportunities presented by a series of small space missions. The UFFO is equipped with a fast-response Slewing Mirror Telescope that uses a rapidly moving mirror or mirror array to redirect the optical beam rather than slewing the entire spacecraft or telescope to aim the optical instrument at the GRB position. The UFFO will probe the early optical rise of GRBs with sub-second response, for the first time, opening a completely new frontier in GRB and transient studies. Its fast response measurements of the optical emission of dozens of GRB each year will provide unique probes of the burst mechanism and test the prospect of GRB as a new standard candle, potentially opening up the z > 10 universe. We describe the current limit in early photon measurements, the aspects of early photon physics, our soon-to-be-launched UFFO-pathfinder mission, and our next planned mission, the UFFO-100

    Fragmentation and Multifragmentation of 10.6A GeV Gold Nuclei

    Get PDF
    We present the results of a study performed on the interactions of 10.6A GeV gold nuclei in nuclear emulsions. In a minimum bias sample of 1311 interac- tions, 5260 helium nuclei and 2622 heavy fragments were observed as Au projec- tile fragments. The experimental data are analyzed with particular emphasis of target separation interactions in emulsions and study of criticalexponents. Multiplicity distributions of the fast-moving projectile fragments are inves- tigated. Charged fragment moments, conditional moments as well as two and three -body asymmetries of the fast moving projectile particles are determined in terms of the total charge remaining bound in the multiply charged projectile fragments. Some differences in the average yields of helium nuclei and heavier fragments are observed, which may be attributed to a target effect. However, two and three-body asymmetries and conditional moments indicate that the breakup mechanism of the projectile seems to be independent of target mass. We looked for evidence of critical point observable in finite nuclei by study the resulting charged fragments distributions. We have obtained the values for the critical exponents gamma, beta and tau and compare our results with those at lower energy experiment (1.0A GeV data). The values suggest that a phase transition like behavior, is observed.Comment: latex, revtex, 28 pages, 12 figures, 3tables, submitted to Europysics Journal

    Local particle densities and global multiplicities in central heavy ion interactions at 3.7, 14.6, 60 and 200A GeV

    Full text link
    corecore