5 research outputs found

    High serum levels of Dickkopf-1 are associated with a poor prognosis in prostate cancer patients.

    No full text
    Background: The Wnt inhibitor Dickkopf-1 (DKK-1) has been linked to the progression of malignant bone disease by impairing osteoblast activity. In addition, there is increasing data to suggest direct tumor promoting effects of DKK-1. The prognostic role of DKK-1 expression in prostate cancer remains unclear. Methods: A prostate cancer tissue microarray (n = 400) was stained for DKK-1 and DKK-1 serum levels were measured in 80 patients with prostate cancer. The independent prognostic value of DKK-1 expression was assessed using multivariate analyses. Results: DKK-1 tissue expression was significantly increased in prostate cancer compared to benign disease, but was not correlated with survival. However, high DKK-1 serum levels at the time of the diagnosis were associated with a significantly shorter overall and disease-specific survival. Multivariate analyses defined high serum levels of DKK-1 as an independent prognostic marker in prostate cancer (HR 3.73; 95%CI 1.44-9.66, p = 0.007). Conclusion: High DKK-1 serum levels are associated with a poor survival in patients with prostate cancer. In light of current clinical trials evaluating the efficacy of anti-DKK-1 antibody therapies in multiple myeloma and solid malignancies, the measurement of DKK-1 in prostate cancer may gain clinical relevance

    Polarimetric Properties of Event Horizon Telescope Targets from ALMA

    No full text
    We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the λ3 mm and λ1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A∗, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%-15%) and large rotation measures (RM > 103.3-105.5 rad m-2), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A∗ we report a mean RM of (-4.2 0.3) 105 rad m-2 at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (-2.1 0.1) 105 rad m-2 at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from -1.2 to 0.3 105 rad m-2 at 3 mm and -4.1 to 1.5 105 rad m-2 at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A∗, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA. © 2021. The American Astronomical Society
    corecore