6 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Identification of glycoproteins in mucous cells of the gill epithelium of Colossoma macropomum after exposure to organophosphate

    No full text
    ABSTRACT The use of organophosphates has been recommended for fish, especially the trichlorfon to control parasites. Colossoma macropomum were exposed to trichlorfon during 96 hours and of total number of mucous cells decreased in the number of cells when compared to the control group. Glycoproteins acid, acid sulphated and neutral was identified in the gill epithelium. Neutra glycoprotein had a significant decrease between control and the sublethal concentration. Acid glycoprotein didn’t have any significant difference between the groups exposed to the trichlorfon, compared to the control group. Sulfated acidic glycoprotein in the group exposed to the trichlorfon was noticed a reduction in number of mucosal cells acidic sulphated. The differences between density cell and production glycoprotein was a response of these cells after exposure to xenobiotic. The reduction of neutral, acid and sulphated acid glycoprotein in the MC of the gill epithelium Colossoma macropomum may affect gills epithelial surface protection by reducing the formation of an unstirred layer and enhance the ion loss

    Identification of glycoproteins in mucous cells of the gill epithelium of Colossoma macropomum after exposure to organophosphate

    No full text
    <div><p>ABSTRACT The use of organophosphates has been recommended for fish, especially the trichlorfon to control parasites. Colossoma macropomum were exposed to trichlorfon during 96 hours and of total number of mucous cells decreased in the number of cells when compared to the control group. Glycoproteins acid, acid sulphated and neutral was identified in the gill epithelium. Neutra glycoprotein had a significant decrease between control and the sublethal concentration. Acid glycoprotein didn’t have any significant difference between the groups exposed to the trichlorfon, compared to the control group. Sulfated acidic glycoprotein in the group exposed to the trichlorfon was noticed a reduction in number of mucosal cells acidic sulphated. The differences between density cell and production glycoprotein was a response of these cells after exposure to xenobiotic. The reduction of neutral, acid and sulphated acid glycoprotein in the MC of the gill epithelium Colossoma macropomum may affect gills epithelial surface protection by reducing the formation of an unstirred layer and enhance the ion loss.</p></div
    corecore