21 research outputs found

    Black Hole Astrophysics in AdS Braneworlds

    Get PDF
    We consider astrophysics of large black holes localized on the brane in the infinite Randall-Sundrum model. Using their description in terms of a conformal field theory (CFT) coupled to gravity, deduced in Ref. [1], we show that they undergo a period of rapid decay via Hawking radiation of CFT modes. For example, a black hole of mass few×M⊙{\rm few} \times M_\odot would shed most of its mass in ∼104−105\sim 10^4 - 10^5 years if the AdS radius is L∼10−1L \sim 10^{-1} mm, currently the upper bound from table-top experiments. Since this is within the mass range of X-ray binary systems containing a black hole, the evaporation enhanced by the hidden sector CFT modes could cause the disappearance of X-ray sources on the sky. This would be a striking signature of RS2 with a large AdS radius. Alternatively, for shorter AdS radii, the evaporation would be slower. In such cases, the persistence of X-ray binaries with black holes already implies an upper bound on the AdS radius of L \la 10^{-2} mm, an order of magnitude better than the bounds from table-top experiments. The observation of primordial black holes with a mass in the MACHO range M∼0.1−0.5M⊙M \sim 0.1 - 0.5 M_\odot and an age comparable to the age of the universe would further strengthen the bound on the AdS radius to L \la {\rm few} \times 10^{-6} mm.Comment: 14 pages, latex, no figures v2: added reference

    Allergische Reaktionen

    No full text
    corecore