95 research outputs found

    Scaling the Raman gain coefficient: Applications to Germanosilicate fibers

    Get PDF

    Electronic structure, magnetism and superconductivity of MgCNi3_{3}

    Full text link
    The electronic structure of the newly discovered superconducting perovskite MgCNi3_3 is calculated using the LMTO and KKR methods. The states near the Fermi energy are found to be dominated by Ni-d. The Stoner factor is low while the electron-phonon coupling constant is estimated to be about 0.7, which suggests that the material is a conventional type of superconductor where TC_C is not affected by magnetic interactions. However, the proximity of the Fermi energy to a large peak in the density of states in conjunction with the reported non-stoichiometry of the compound, has consequences for the stability of the results.Comment: 3 pages, 4 figure

    First-principles study of stability and vibrational properties of tetragonal PbTiO_3

    Full text link
    A first-principles study of the vibrational modes of PbTiO_3 in the ferroelectric tetragonal phase has been performed at all the main symmetry points of the Brillouin zone (BZ). The calculations use the local-density approximation and ultrasoft pseudopotentials with a plane-wave basis, and reproduce well the available experimental information on the modes at the Gamma point, including the LO-TO splittings. The work was motivated in part by a previously reported transition to an orthorhombic phase at low temperatures [(J. Kobayashi, Y. Uesu, and Y. Sakemi, Phys. Rev. B {\bf 28}, 3866 (1983)]. We show that a linear coupling of orthorhombic strain to one of the modes at Gamma plays a role in the discussion of the possibility of this phase transition. However, no mechanical instabilities (soft modes) are found, either at Gamma or at any of the other high-symmetry points of the BZ.Comment: 8 pages, two-column style with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#ag_pbt

    Structural, Electronic, and Magnetic Properties of MnO

    Full text link
    We calculate the structural, electronic, and magnetic properties of MnO from first principles, using the full-potential linearized augmented planewave method, with both local-density and generalized-gradient approximations to exchange and correlation. We find the ground state to be of rhombohedrally distorted B1 structure with compression along the [111] direction, antiferromagnetic with type-II ordering, and insulating, consistent with experiment. We show that the distortion can be understood in terms of a Heisenberg model with distance dependent nearest-neighbor and next-nearest-neighbor couplings determined from first principles. Finally, we show that magnetic ordering can induce significant charge anisotropy, and give predictions for electric field gradients in the ground-state rhombohedrally distorted structure.Comment: Submitted to Physical Review B. Replaced: regenerated figures to resolve font problems in automatically generated pd

    Ab-initio study of BaTiO3 surfaces

    Full text link
    We have carried out first-principles total-energy calculations of (001) surfaces of the tetragonal and cubic phases of BaTiO3. Both BaO-terminated (type I) and TiO2-terminated (type II) surfaces are considered, and the atomic configurations have been fully relaxed. We found no deep-gap surface states for any of the surfaces, in agreement with previous theoretical studies. However, the gap is reduced for the type-II surface, especially in the cubic phase. The surface relaxation energies are found to be substantial, i.e., many times larger than the bulk ferroelectric well depth. Nevertheless, the influence of the surface upon the ferroelectric order parameter is modest; we find only a small enhancement of the ferroelectricity near the surface.Comment: 8 pages, two-column style with 4 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#pad_sur

    Influence of uniaxial tensile stress on the mechanical and piezoelectric properties of short-period ferroelectric superlattice

    Get PDF
    Tetragonal ferroelectric/ferroelectric BaTiO3/PbTiO3 superlattice under uniaxial tensile stress along the c axis is investigated from first principles. We show that the calculated ideal tensile strength is 6.85 GPa and that the superlattice under the loading of uniaxial tensile stress becomes soft along the nonpolar axes. We also find that the appropriately applied uniaxial tensile stress can significantly enhance the piezoelectricity for the superlattice, with piezoelectric coefficient d33 increasing from the ground state value by a factor of about 8, reaching 678.42 pC/N. The underlying mechanism for the enhancement of piezoelectricity is discussed

    Electronic properties of metal induced gap states at insulator/metal interfaces -- dependence on the alkali halide and the possibility of excitonic mechanism of superconductivity

    Full text link
    Motivated from the experimental observation of metal induced gap states (MIGS) at insulator/metal interfaces by Kiguchi {\it et al.} [Phys. Rev. Lett. {\bf 90}, 196803 (2003)], we have theoretically investigated the electronic properties of MIGS at interfaces between various alkali halides and a metal represented by a jellium with the first-principles density functional method. We have found that, on top of the usual evanescent state, MIGS generally have a long tail on halogen sites with a pzp_z-like character, whose penetration depth (λ\lambda) is as large as half the lattice constant of bulk alkali halides. This implies that λ\lambda, while little dependent on the carrier density in the jellium, is dominated by the lattice constant (hence by energy gap) of the alkali halide, where λLiF<λLiCl<λLiI\lambda_{\rm LiF} < \lambda_{\rm LiCl} < \lambda_{\rm LiI}. We also propose a possibility of the MIGS working favorably for the exciton-mediated superconductivity.Comment: 7 pages, 9 figure

    Phase transitions in BaTiO3_3 from first principles

    Full text link
    We develop a first-principles scheme to study ferroelectric phase transitions for perovskite compounds. We obtain an effective Hamiltonian which is fully specified by first-principles ultra-soft pseudopotential calculations. This approach is applied to BaTiO3_3, and the resulting Hamiltonian is studied using Monte Carlo simulations. The calculated phase sequence, transition temperatures, latent heats, and spontaneous polarizations are all in good agreement with experiment. The order-disorder vs.\ displacive character of the transitions and the roles played by different interactions are discussed.Comment: 13 page

    Schwinger boson theory of anisotropic ferromagnetic ultrathin films

    Full text link
    Ferromagnetic thin films with magnetic single-ion anisotropies are studied within the framework of Schwinger bosonization of a quantum Heisenberg model. Two alternative bosonizations are discussed. We show that qualitatively correct results are obtained even at the mean-field level of the theory, similar to Schwinger boson results for other magnetic systems. In particular, the Mermin-Wagner theorem is satisfied: a spontaneous magnetization at finite temperatures is not found if the ground state of the anisotropic system exhibits a continuous degeneracy. We calculate the magnetization and effective anisotropies as functions of exchange interaction, magnetic anisotropies, external magnetic field, and temperature for arbitrary values of the spin quantum number. Magnetic reorientation transitions and effective anisotropies are discussed. The results obtained by Schwinger boson mean-field theory are compared with the many-body Green's function technique.Comment: 14 pages, including 7 EPS figures, minor changes, final version as publishe
    corecore