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Scaling of the Raman Gain Coefficient:
Applications to Germanosilicate Fibers

Karsten Rottwitt, Jake Bromage, Andrew J. Stentz, Lufeng Leng, Member, IEEE, Malcolm E. Lines, and Henrik Smith

Abstract—This paper presents a comprehensive analysis of the
temperature dependence of a Raman amplifier and the scaling of
the Raman gain coefficient with wavelength, modal overlap, and
material composition. The temperature dependence is derived by
applying a quantum theoretical description, whereas the scaling
of the Raman gain coefficient is derived using a classical electro-
magnetic model. We also present experimental verification of our
theoretical findings.

Index Terms—Optics communication, Raman amplification.

I. INTRODUCTION

RAMAN amplification is becoming increasingly important
in optical communication systems as a tool for offsetting

intrinsic fiber losses. During the 1980s, before the development
of erbium-doped fiber amplifiers (EDFAs), much attention was
given to the use of Raman amplification in optical fibers [1],
[2]. There is now renewed interest for several reasons. First of
all, gain is achievable at any wavelength, given a suitable pump
source (1.3 m [3], 1.4 m [4], -band [5], - and -band [6]).
Second, broad-bandwidth amplifiers can be made by combining
multiple pump wavelengths [7]. Third, and perhaps most impor-
tant, the use of distributed Raman amplification in transmission
spans gives better noise performance than the use of lumped am-
plification between the spans [8].

In this paper, we consider a fundamental parameter for
Raman amplification: the Raman gain coefficient. This param-
eter determines the strength of the coupling between a pump
beam and a signal beam due to stimulated Raman scattering.
By applying the results of earlier work [9]–[13], we present
a theoretical model for the Raman amplification process in
optical single-mode fibers and arrive at propagation equations
for signal and pump beams. Using a combination of theory and
experimental data, we demonstrate how the Raman gain coef-
ficient scales with wavelength and how the fiber temperature
affects the performance of a Raman amplifier [14].

In Section II, we present a theoretical model that makes it
possible to evaluate the Raman gain coefficient of an optical
fiber. This model demonstrates how the fiber temperature af-
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fects amplifier performance. In addition, the theory provides the
scaling of the gain coefficient with wavelength and with the spa-
tial overlap of the pump and signal modes. In Section III, we
compare theoretical results from Section II with experimental
measurements of the wavelength and temperature dependence,
and the impact on amplifier design and performance will be dis-
cussed. Section IV contains a summary of our conclusions.

II. THEORY

When light propagates through an optical fiber, it interacts
with the fiber material. Most common fibers consist of a silica
host, SiO, to which germania, GeOis added in the core to in-
crease the refractive index and form the waveguide. Such glasses
are complicated since they form an amorphous network con-
sisting of Si–O–Si and Si–O–Ge bridges and the rarer Ge–O–Ge
bridges. Raman scattering results from interactions between the
optical fields and this amorphous network. It is useful to imagine
two atoms, silicon and/or germanium, each connected with a
springlike bond to an oxygen atom. Since the oxygen atom is
lighter than the other atoms, it behaves like a harmonic oscil-
lator with an energy that is changed by the Raman process. In
the most likely process, energy is transferred from the propa-
gating field to the oscillator. As a result, the scattered light has
a lower optical frequency. Afterwards, the oscillator decays to-
ward equilibrium through a myriad of processes [12].

In order to effectively design Raman amplifiers, one must
solve the propagation equation that governs an information-car-
rying signal beam. However, in this work, we assume that the
amplifier performance may be described by a continuous signal
and pump wave. This has proven experimentally to be a useful
approximation. In Section II-A, we derive this equation that de-
scribes the change in photon number with distance due to the
Raman process. In addition, this equation shows how tempera-
ture influences the performance of Raman amplifiers. The im-
portant material parameter of the Raman process, as described
in Section II-A, is the differential polarizability. In Section II-B,
we use Maxwell’s equations to relate the differential polariz-
ability to the third-order susceptibility and show how this is re-
lated to the gain of a propagating electromagnetic field. From
this, we show how the Raman gain coefficient scales with wave-
length and the guiding properties of an optical fiber.

A. Rate Equations for the Stokes Scattering Process

In a simple picture of the Raman scattering process where
a photon at angular frequency scatters off a molecule, two
events are possible. In one event, a phonon with the angular fre-
quency is generated in addition to a photon at lower angular
frequency . This is the Stokes process. In the other
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event, the anti-Stokes process, an incoming photon receives en-
ergy from a phonon so that after the scattering process, it has
a higher angular frequency . These events may
happen spontaneously or they may be stimulated by photons at
the Stokes or anti-Stokes frequencies.

In the Stokes event, the initial state, denoted by, may be
described as a system with incoming photons at , scat-
tered photons at , and phonons at . The final state, de-
noted by , may be characterized as a system with
photons at frequency , scattered photons at , and

phonons at . Alternatively, the final state may be char-
acterized as a system with photons at , scattered
photons at , and phonons at . This latter process de-
scribes absorption of a photon at the Stokes shifted frequency.

In the following, denotes the steady-state rate of transi-
tions per unit time between the initial stateand the final state

. The transition rate between the initial and the final state may
be evaluated from Fermi’s golden rule [9]

(1)

where is the Hamiltonian operator describing the inter-
action between the propagating electromagnetic fields and the
scattering molecules, while is the density of final states,
which includes the sum of contributions from all possible final
states.

We restrict our analysis to a single mode of the scattered field,
as is relevant for the application of Raman scattering in an op-
tical fiber amplifier. Starting from (1), we derive equations that
govern the growth of Stokes-shifted photons within the mode.
The density of states depends on the damping involved
in the molecular transition from the final state to the initial state.
There are many processes that bring the system back to thermal
equilibrium. Often a Lorentzian line shape is used for .
For further details, see [9] and [10].

In the Raman process, the scattering molecule may be de-
scribed as a quantum oscillator. The interaction Hamiltonian for
a polarized dipole in an electric field equals

(2)

where is the dipole moment that occurs for small
molecular displacements, and is the electric-field vector
[9], [11]. In both, denotes the position of theth molecule.
The sum extends over all molecules within the interaction
volume. Note that we use SI units throughout this paper.

In this work, the dipole moment is taken to consist of two con-
tributions, one involving the equilibrium polarizability tensor

responsible for Rayleigh scattering, and the other involving
the differential polarizability , which is a third-rank
tensor, responsible for Raman scattering [12]. The displacement
of the oscillator from its equilibrium position enters the differ-
ential polarizability through the displacement vector, and the
correspondingth component of the dipole moment is therefore
given by

(3)

In the remaining part of this subsection, we describe the dis-
placement of the oscillators by a single coordinate, which con-
stitutes a wave propagating in the same direction as the electric
field (the direction)

(4)

Here, and are the annihilation and creation operator of a
phonon, is the angular frequency of a phonon,is the mass
associated with the vibration, is the number of oscillators in
the interaction volume , and is the propagation constant for
the phonon wave. For simplicity, we identify the number of os-
cillators with the number of molecules. Since we shall describe
modes propagating in a waveguide, we use the propagation con-
stant, e.g., in (4), and not the wave vector . The elec-
tric field has two frequency components, one corresponding to
the incoming pump field (denoted with index), and one cor-
responding to the scattered field (denoted with index). The
composite quantized electric field is then

(5)

where and are the annihilation and creation operators,
respectively, of the photons in the scattered and the pump
field . The permittivities in (5) are approximated by
the scalar quantities and . The unit vectors
specify the state of polarization (SOP) of the plane waves. The
Hamiltonian (2) therefore consists of terms characterized by
frequencies , , and , and their sums and differences. We
consider only the terms that are relevant for the Stokes Raman
scattering process and furthermore assume that and

. The interaction Hamiltonian
therefore reduces to

(6)

For simplicity, we have represented the differential polariz-
ability by the single component (we return
to the full tensor description in Section II-B). The first term
represents a Raman process where a photon atis emitted,
whereas the second term describes the absorption of a photon at

due to the Raman process. To obey energy and momentum
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conservation laws, and for the
Stokes scattering process. To simplify the notation, we replace
the summations in (6) with the terms

and

(7)

According to (1), the transition rate from an initial state to a final
state where photons at are emitted is related to the matrix
element

(8)

where and denote the occupation number of the scat-
tered and incoming photons, while is the phonon occupation
number. From this, we arrive at the emission rate for pho-
tons at

(9)

Since the phonons are assumed to be in equilibrium at tem-
perature , the occupation number is the thermal equilib-
rium number , where is
Boltzmann’s constant.

Note that the emission rate scales with the product of the
pump and Stokes frequencies and the phonon occupation
number. The implications of this will be discussed in detail in
subsequent sections.

The absorption of a photon at is evaluated from the second
term in (6). Thus, we find

(10)

The net rate of change per unit length of the scattered photon
number at is the difference between the emission and ab-
sorption rates, divided by the phase velocity ,
i.e.,

(11)

where the constant has
been introduced to simplify the notation.

Equation (11) is a rate equation for the scattered photons
and is the main result of this section. It consists of four terms
that are often referred to as stimulated emission, stimulated ab-
sorption, spontaneous absorption, and spontaneous emission,
respectively. It should be noted that the spontaneous emission
term is proportional to and thus depends on the tempera-
ture of the fiber. On the other hand, the difference in stimulated
emission and absorption terms does not depend on the phonon
number and therefore is temperature-independent. In addi-
tion, the spontaneous absorption term is typically much smaller
than the other terms and can therefore be neglected.

Until now, we have focused on evaluating the number of
photons at the Stokes-shifted frequency. For completeness, the
rate of change in the number of anti-Stokes-shifted photons

with distance is derived by identifying terms in the Hamiltonian
where and . This leads to the
result

(12)

B. Gain Coefficient

In Section II-A, we used a quantum mechanical description
of the interaction between optical fields and molecular phonons
to derive rate equations for the generation and amplification of
Stokes photons. In this section, we make a connection to the tra-
ditional concept of nonlinear susceptibility. To make the link, we
start with Maxwell’s equations for classical optical fields and
a classical description of molecular motion based on a forced,
damped harmonic oscillator. From this, we obtain an expression
for the Raman gain coefficient, including its dependence on ma-
terial and field properties.

First, we consider an electric field at angular frequency.
From Maxwell’s equations, we derive the relation

(13)

The displacement vector is related to the electric field and
the induced polarization through the constitutive relation

(14)

The electric permittivity tensor is related to the first-order

susceptibility tensor through , where
is the vacuum permittivity. Note that theth component

of the linear induced polarization is
included through , i.e., in (14) is the nonlinear induced
polarization.

As we are focusing on nonlinearity in the form of stimu-
lated Raman scattering, we concentrate on changes in the in-
duced polarization due to molecular motion. Here, we assume
that the impact of such molecular motion is represented through
the molecular polarizability, . If the induced polarization os-
cillates at the same frequency as the applied electric field, the
polarizability is a constant, represented by the equilibrium po-
larizability . The effect of displacing atoms within a mol-
ecule may be described by including the differential polariz-
ability , where is the coordinate that describes the
local displacement that results from the time-dependent electric
field. In the case of Raman scattering, the displacement origi-
nates from an oscillating electric field and the movement of the
atoms is oscillatory but may occur in different modes, such as
rocking or vibrational modes [15].

The polarization induced by the electric field equals the
dipole moment density and is given by

(15)

The first term, on the right-hand side (RHS), is responsible for
Rayleigh scattering, whereas the second term is responsible for
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Raman scattering. Becauseis a function of , the second term
is nonlinear in the electric field. We show later that this term
is proportional to a tensor product with the electric field to the
power of three and therefore can be expressed as a third-order
nonlinearity through a third-order susceptibility tensor .

In the case of a Raman amplifier, the electric field may be de-
scribed as a sum of two monochromatic waves, one at the pump
frequency and one at the frequency of the scattered wave, which
for the amplifier application, coincides with the frequency of the
signal. In the following, we use indexesand to distinguish
the signal and pump, respectively. If we restrict this descrip-
tion to the most common fiber types, i.e., weakly guiding fibers,
we may separate the electric field into a transverse part ,
(where and ) and a function of : .
The total electric field is then

(16)

where is a unit polarization vector and is the propagation
constant as determined from the waveguide eigenvalue problem

.
To obtain a propagation equation for the scattered field, we

assume that the displacementmay be expressed as

(17)

We then identify fields at appearing in the induced polariza-
tion by requiring that (Stokes case). From (15),
the relevant term for theth component of the induced polariza-
tion at is then

(18)

with a complex conjugate at .
A relation between the displacement vector, the polariz-

ability, and the electric field may be obtained by applying a
simple oscillator model to describe the Raman scattering. The
oscillation of the displacement is described through the forced
harmonic oscillator equation

(19)

where is the damping constant and is the undamped
resonance frequency, the mass, and the driving force of
the oscillator. Since the molecular forces are conservative, the
force on the oscillator is minus the gradient of the potential

, where is the dipole moment given by
. The bar indicates that averaging over a few

optical cycles is needed since the molecules cannot respond to
optical frequencies [11]. This averaging is implicitly assumed
in the remainder of this text. The force is thus
given by

(20)

When the total electric field interacting with the oscillator
is the sum of the pump and the scattered field, the driving
force at frequency originates from products containing
the electric field at the pump and signal frequency, i.e.,

. The relevant
relation between the th component of the force and the
electromagnetic field is then

(21)

where and are the components of the vectors and
, respectively. In (21), it is assumed that the transverse

parts and are independent of the direction of the
electric field. When the force is inserted into (19), we obtain

(22)

where is the amplitude of the force in (21). Omitting the
oscillation term , we obtain from (18) the
induced polarization at frequency as

(23)

with a complex conjugate at frequency . The term that is a
summation over is recognized from (21).

Alternatively, the th component of the induced third-order
polarization may be written in terms of the third-order suscep-
tibility tensor through

(24)

Assuming that the electric field can be expressed as shown in
(16), the contribution oscillating at frequency is

(25)

with a complex conjugate at . Comparing (23) and (25) al-
lows us to identify

(26)

Since an optical fiber typically is made of germanosilicate glass,
which is an amorphous material, the fourth-rank tensor is
isotropic. Thus, has only 21 nonzero elements, which are
the elements where the indexes are either identicalor occur
in pairs , , and [12].

Applying (14) to (13), and assuming , (13) becomes

(27)

By inserting
from (16), and assuming that the SOP for the pump and the
scattered field do not change during propagation, and neglecting

, we obtain a wave equation for each component of
the Stokes scattered wave

(28)
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In an optical fiber, where the electric field is approximately
transverse, i.e., , only four contributions ap-
pear in the sum on the RHS of (28) when the tensor properties
of , mentioned previously, are taken into account. Equation
(28) may be further simplified by using

, and [16].
Assuming that is much smaller than , contributions

from and may be neglected and (28) reduces to

(29)

where is either or . From this, it is clear that
is responsible for the Raman interaction when the pump

and signal are polarized along the same axis, whereas is
responsible for the Raman interaction when the pump and scat-
tered wave are polarized along orthogonal axes. Equation (29)
shows that Raman gain originates from the imaginary part of the
third-order susceptibility.

The use of polarization-maintaining fibers allows one to mea-
sure the two contributions in (29). In [17] and [18], such mea-
surements show that the cross coupling is much weaker than
the parallel coupling (less by more than a factor of ten) and that
it peaks at a much lower frequency difference between signal
and pump. This difference between cross and parallel coupling
leads to polarization-dependent gain (PDG) in Raman ampli-
fiers when the pump light has a high degree of polarization. The
effect can be particularly large when the signal and pump light
copropagate in the fiber [19], [20]. PDG can be significantly
reduced by either depolarizing the Raman pumps with, for ex-
ample, a Lyot depolarizer [21] or by using pairs of uncorrelated
polarized pumps that are multiplexed with a polarization-beam
combiner.

From (29), the rate equation for the power
is

Re (30)

where is the cross section of the fiber. This equation defines
the gain coefficient .

If the pump is unpolarized, as is often the case, the
pump power is divided equally between the two compo-
nents, represented by indexand , at any point in time
and at any point along the fiber,

. Consequently

Re (31)

Equation (31) is the main result of this section. From this, one
may predict the material dependence, for example, by sepa-
rating the integrals into contributions from the core and from
the cladding of the fiber. It also shows how to include the modal
overlap of the pump and the signal.

If we furthermore assume that the susceptibilities are constant
across the entire fiber cross section, the gain coefficientbe-
comes a simple average of the two contributions multiplied by
the pump power

Im
(32)

where is the effective area of the overlap between the pump
and signal

(33)

We now make the approximation that where
is the effective refractive index of propagation. In a step-index
fiber is less than the refractive index of the core and greater
than the refractive index of the cladding. From this,is pro-
portional to , and the gain coefficient is given
by

Im
(34)

This shows, that under the assumption that the third-order sus-
ceptibilities are frequency-independent, the gain coefficient
scales linearly with the frequency of the Stokes-shifted wave.
Since optical frequencies are of the order of 10Hz, is often
replaced with for convenience. In optical fibers, is typi-
cally of the order of 1W km and m .

III. A PPLICATION TO EXPERIMENTS

From the theory previously stated, it is expected that the
Raman efficiency increases as the pump wavelength decreases.
However, the efficiency also depends strongly on the waveguide
design and the material defining the waveguiding properties.
These dependencies will be discussed in Sections III-A and
B. In addition, the theory also shows that the gain in any
Raman amplifier is independent of temperature, whereas the
noise performance becomes worse for increasing temperature.
Section III-C will focus on this temperature dependence. In
Sections III-A–C, the theoretical predictions will be verified by
comparing with experimental data.

A. Wavelength and Fiber Dependence

The optical properties of a light-guiding fiber, such as the re-
fractive index and the Raman gain coefficient, depend on the
constituents of the fiber. Most common fibers consist of a silica,
SiO , host to which germania, GeO, is added in the core to in-
crease the refractive index and form the waveguide. The distri-
bution of germania and silica in the mixture can be calculated
from the refractive index profile using Sellmeier data [22], as-
suming that the refractive index is a sum of independent contri-
butions from SiO and GeO. The Raman gain coefficient is de-
termined by the number of Si–O–Si, Si–O–Ge, and Ge–O–Ge
bridges and the spatial overlap of the radial profiles of pump
and signal intensities, weighted by the fractional distribution of
germania and silica. However, for realistic germania concen-
trations, the occurrence of Ge–O–Ge bridges can be neglected
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Fig. 1. Amplitude normalized spectra for (a)C (��) and (b)C (��)
as a function of the separation between 1455-nm pump and signals in cm. The
dashed curves are measurements made on vitreous silica and germania [24].

and the relative distribution of Si–O–Si and Si–O–Ge bridges is
, where is the mole fraction GeOconcentration.

Using this, we may decompose the Raman gain spectrum into
a sum of two contributions, one from Si–O–Si bridges and one
from Si–O–Ge bridges.

Combining (30) and (31), we arrive at the most general ex-
pression for the gain coefficient by using . As-
suming a fixed frequency and using the previously noted de-
composition into the two material contributions, i.e., one from
Si–O–Si bridges and another from Si–O–Ge bridges, we deter-
mine the Raman gain efficiency from

(35)

where and are the radial intensity distributions
for the pump and signal, respectively, normalized such that

, . The quantity is the frequency
separation between the pump and the signal.
and are the material spectra for contributions to
the Raman gain coefficient from Si–O–Si and Si–O–Ge
bridges, respectively [23], as shown in Fig. 1. Their peak
values are 4.20 m W km for at 445 cm and
14.84 m W km for at 430 cm . The normalized gain
coefficient spectra for vitreous silica and germania are also
shown for comparison [24]. Note that the Si–O–Si and vitreous
silica curves (a) are similar, as is expected. On the other hand,

Fig. 2. Predicted (dashed curves) and measured (solid curves) Raman gain
spectra on a TrueWave RS fiber spectra.

the Si–O–Ge curve (b) is significantly different from the
vitreous germania curve. In particular, the feature at 675 cm
corresponds to a stretching vibration of the Si–O–Ge bridge
and therefore is not seen in the vitreous germania spectrum
[15]. This approach may be extended to include other dopants,
such as fluorine or phosphor by adding additional terms to (35).

By combining the theory from Section II-B and the previously
described model (35), we obtain the frequency dependence of
the gain coefficient. If is the original frequency at which

and are found, the gain coefficient at any
other angular frequency becomes, according to (35)

(36)

For convenience, the ratio is often replaced with ,
as mentioned in Section II-B. Using (36), the Raman gain coef-
ficient for any germanosilicate fiber can be calculated when the
refractive index profile and pump wavelength are known.

To verify this result, we measured the wavelength spectrum
of the Raman gain coefficient of a transmission fiber (TrueWave
RS) using three different pump wavelengths of 1425, 1455, and
1485 nm, as shown by the solid lines in Fig. 2. (More recently, a
new measurement technique has been proposed for obtaining
the pump-wavelength dependence of the Raman gain coeffi-
cient [25] that does not require multiple pump wavelengths. In-
stead, using measurements made with a single pump, the wave-
length dependence is obtained from the asymmetry between the
loss from stimulated absorption at shorter wavelengths and gain
from stimulated emission at longer wavelengths.) By knowing
the refractive index profile of the TrueWave RS fiber and using
the spectra in Fig. 1, together with (36), we were able to simu-
late the measurements. The results of the simulations are shown
as the dashed lines in Fig. 2.

These results show that the scaling achieved in this model ac-
curately predicts the Raman gain coefficient when one varies
the pump and signal wavelengths. This example also demon-
strates that the reduction in Raman efficiency with increasing
pump wavelength is due in part to the reduced spatial overlap

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 24,2010 at 09:28:56 EST from IEEE Xplore.  Restrictions apply. 



1658 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 7, JULY 2003

between the pump and signal modes. The difference between
the peak Raman gain coefficients for 1425-nm and 1485-nm
pumps is approximately 10%, which can only be partially ac-
counted for by the 4% reduction in . Hence, to fully ex-
plain the reduced Raman efficiency, one must take into account
the reduced overlap of pump and signal with increasing pump
wavelength. Recently, results have been published for a range
of modern fiber types that show that the dependence of Raman
gain on the pump wavelength varies significantly depending on
the fiber design [26].

B. Scaling the Raman Gain Coefficient Using Effective Area

In Section III-A, we described how one can predict the Raman
gain coefficient of a single-mode germanosilicate fiber from its
refractive index profile. In some cases, however, such informa-
tion may not be available. In this section, we show how one may
approximately scale the Raman gain coefficient from measure-
ments made at one pump wavelength to a new pump wavelength
given only information about how the effective area of the fiber
changes with wavelength. This approach is helpful for designing
broad-band Raman amplifiers that have many pumps covering
a range of wavelengths; the Raman gain coefficient only needs
to be measured at a single wavelength if one has measurements
or predictions for the effective area versus wavelength.

The effective area that appears in (33) is an overlap between
the spatial mode profile of the pump and signal. A more conven-
tional effective area [14], which may typically be provided by
a fiber manufacturer, is the effective area of the optical
mode at a single wavelengthas defined from the transverse
part of the electric field in the following way:

(37)

Note that this equation is identical to (33) if .
If we assume that the radial intensity distribution of the mode
is Gaussian, we can write the effective area representing the
overlap between pump and signal (see (33)), as [27]

(38)

where the signal wavelength is given by
. Using the scaling shown in (34), we can write the gain

coefficient for a new pump wavelength as

(39)

The following measurement results illustrate the validity of this
approach. Fig. 3 shows the measured Raman gain coefficient
of a TrueWave RS fiber for four pump wavelengths: 1423.6,
1443.8, 1471.3, and 1496.0 nm. The effective area as a function
of wavelength was calculated from the refractive index profile
of the fiber and is shown in Fig. 4. We used (39) to rescale each
Raman gain coefficient curve from their original pump wave-
lengths to the new pump wavelength of 1454 nm. The rescaled
coefficients versus the frequency difference between pump and
signal are plotted in Fig. 5. Starting with the mea-
surements made for pump wavelengths that are 73 nm apart, we
obtain a prediction of the Raman gain coefficient for the new

Fig. 3. Raman gain coefficients of TrueWave RS measured using four different
pump wavelengths as shown in the inset.

Fig. 4. Effective area as a function of wavelength. These numerical data
were used in combination with (39) to test the validity of scaling Raman gain
coefficients using effective area data alone.

Fig. 5. Rescaled Raman gain coefficient from four different pump wavelengths
to a pump at 1454 nm.

pump wavelength that differs by only 4%, confirming the va-
lidity of this approach.

C. Temperature Dependence

In this section, we show how the gain and noise performance
of a Raman amplifier depend on the fiber temperature. As shown
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in (11), the differential equation for the increase in photons at
the signal wavelength with has four terms. These terms
correspond to emission and absorption processes that are either
stimulated or spontaneous (see Section II-A). Present in each of
the four terms is the phonon number at thermal equilibrium,
which has the following temperature dependence for phonons
at frequency :

(40)

as discussed following (9). Consideration of these four terms
explains why Raman gain and spontaneous emission have dif-
ferent temperature dependencies.

Let us first consider Raman gain. As the stimulated emission
and absorption terms have equal and opposite dependence on

, gain at the signal wavelength has no temperature depen-
dence. Thus, if one is only interested in stimulated processes,
to describe Raman gain and pump depletion in a backward-
pumped amplifier with one pump and signal wavelength, one
can use

(41)

(42)

where is the pump power at the frequency, the signal
power at frequency , the loss at the signal wavelength,

the loss at the pump wavelength, and the Raman gain
coefficient.

The small-signal gain is calculated by neglecting the Raman
term in the pump propagation equation that accounts for pump
depletion by the signal. Often gain is expressed as anON–OFF

Raman gain , so called because it represents the increase
in signal power at the amplifier output , when the pump
is turned on. (Note that the small-signalON–OFFgain is simply
the net small-signal gain plus the signal span loss.) From (41)
and (42), the small-signalON–OFFgain is:

(43)

where is the effective length for
the pump, and the pump power launched at .

To model amplifier spontaneous emission noise (ASE), we
include a spontaneous emission source term to (41) in accor-
dance with (11). Denoting the ASE power in bandwidthco-
propagating with the signal as and in the opposite direc-
tion as , we get the equations

(44)

where in front of denotes power propagating in
the forward and backward direction, respectively. is the
fiber attenuation at the wavelength of the ASE power. The noise
figure of the amplifier is

(45)

where is the number of ASE photons in the
signal mode, and equals theON–OFFgain times the trans-
mission, , through the passive fiber span of the same length

Fig. 6. (a) Small-signalON–OFF gain at room temperature (295 K) and
194 K. The two measurements are equal, illustrating that Raman gain is not
temperature-dependent. (b) Increase in the background loss of the fiber due to
microbends when the fiber spool was cooled.

as the distributed amplifier, i.e., , as ob-
tained from (41) by using .

When Raman pumping is used to convert a fiber span into a
distributed amplifier, the degradation of the signal-to-noise ratio
(SNR) is typically much larger than that produced by a discrete
amplifier. (That is, the noise figure of the pumped span may be
many decibels worse than a typical discrete amplifier.) How-
ever, we can quantify the performance improvement gained by
distributed amplification by calculating the noise figure that a
discrete amplifier would need when placed after an unpumped
span to give the same noise performance. This is called the ef-
fective noise figure and is defined as

(46)

In the following, we report on experiments performed to test
these theoretical predictions experimentally. In the first exper-
iment, we cooled a spool containing 9 km of standard disper-
sion-shifted fiber using solid CO(“dry ice”). Fig. 6(a) shows
theON–OFFRaman gain measured at 295 K and 194 K. Cooling
a fiber that is situated on a spool may increase the microbend
loss of fiber, changing the effective length and therefore the
Raman gain [see (43)]. We measured the spectral loss at both
temperatures, and although we saw a significant increase in
signal loss at 194 K [see Fig. 6(b)], the pump loss was un-
changed. Furthermore, as we are interested in the small-signal
ON–OFFRaman gain, changes in signal loss are irrelevant. These
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Fig. 7. Output of amplified spontaneous emission when the fiber is at 295 K
(solid) or 194 K (dotted). CorrespondingON–OFF gain spectra are shown in
Fig. 6. More ASE is produced when the fiber temperature is higher, particularly
at wavelengths close to the pump.

measurements confirm the theoretical prediction that Raman
gain does not depend on fiber temperature.

The ASE power, measured with a 1-nm resolution bandwidth
is shown in Fig. 7, with the ASE power scaled to take into ac-
count increased background loss at 194 K. These two measure-
ments show that, unlike the Raman gain, the ASE power and,
therefore, the amplifier noise figure are temperature-dependent.

To test the model quantitatively, we made measurements over
a broader range of Raman gains and temperatures. Here, we
counterpumped 15 km of dispersion-shifted fiber at 1455 nm.
We measured both theON–OFF gain and noise figure as a func-
tion of wavelength. The first measurements were made at room
temperature for peak gains ranging from 2 to 26 dB in 2-dB
increments. Then, we cooled the fiber to77 K using liquid ni-
trogen and repeated the measurements.

The results are shown in Figs. 8 and 9. Here, the wavelength
data are plotted as the effective noise figure versusON–OFFgain,
with different curves corresponding to different choices of peak
gain. Notice that for a given value of peak gain, the noise figure
is a two-valued function of gain, and so the data form a loop.
This is because two wavelengths that have the same gain do not
necessarily have the same effective noise figure.

If we start at signal wavelengths close to the pump and trace
a loop of one curve, the noise figure increases to its maximum
value. For example, for 25-dB peakON–OFFgain, the maximum
effective noise figure is 7 dB for only a 3-dB gain, at a frequency
shift of about 0.4 THz (see Fig. 8). At wavelengths further from
the pump, the noise figure drops as the gain peaks at a wave-
length that corresponds to a frequency close to 13 THz below
the pump. Then, for even longer wavelengths, both the gain and
noise figure return to zero.

There are two effects that cause the curves to form a loop: one
is the wavelength dependence of the intrinsic fiber loss and the
other, and most dominant, effect is the temperature dependence
of the spontaneous emission, which gives the most pronounced
contribution for wavelengths close to the pump wavelength. By
comparison, measurements made at 77 K show a much more
confined loop (see Fig. 9). This is because the spontaneous emis-
sion power is reduced at lower temperatures, as theoretically
predicted in Section II.

Fig. 8. Effective noise figure plotted versusON–OFF gain for fiber at 295 K.
Each curve corresponds to a different peak gain with values ranging from 2 to
26 dB in 2-dB increments.

Fig. 9. Data for fiber at 77 K. Peak gain values range from 2 to 24 dB in 2-dB
increments.

Fig. 10. Predictions for 295 K. Compare with Fig. 8.

We have used this theory in an amplifier model to accurately
predict these curves for both fiber temperatures from the
measured Raman gain coefficient and background losses.
These predictions are shown in Figs. 10 and 11. Comparing
Figs. 8–11, one can see only small deviations between measured
and predicted data. The discrepancies are most significant at
high values of the Raman gain. This small deviation originates
from end-reflections in our measurements [28].
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Fig. 11. Predictions for 77 K. Compare with Fig. 9.

Clearly, one must include this temperature dependence when
modeling Raman amplifiers. However, for realistic temperature
variations 25 C 50 C , the noise figure only varies by a few
tenths of a decibel across commonly used signal wavelength
bands. Furthermore, there is no variation in signalON–OFFgain
[28].

IV. CONCLUSION

In this paper, we consider a critical parameter for Raman am-
plifier design, the Raman gain coefficient of an optical fiber.
First, we present a quantum mechanical model that describes the
interaction between pump and signal photons, involving optical
phonons of the lattice vibrational motion. From this model, we
obtain a rate equation for photons at the signal wavelength con-
taining emission and absorption terms from both stimulated and
spontaneous processes. This equation shows that Raman gain
does not depend on the temperature of the fiber, whereas spon-
taneous emission does. We present experimental data that sup-
port these conclusions by showing excellent agreement with our
numerical simulations.

In a second derivation, we model stimulated Raman scattering
in terms of classical optical fields, treating the molecular system
as a forced harmonic oscillator. This more intuitive model re-
veals the connection between the differential polarizability of
a molecular lattice and its nonlinear susceptibility, a quantity
traditionally used in nonlinear optics. From this result, we see
why Raman gain depends on the relative polarization states of
the pump and signal fields. We also explain the dependence of
Raman gain on the composition of a fiber and its waveguide de-
sign. This result allows one to predict the Raman gain coefficient
when the susceptibility changes radially, as is typically the case
for germanosilicate optical fibers. Then, we show experimental
results that support this approach. For one set of data, we com-
pare Raman gain coefficient spectra, measured for a range of
pump wavelengths, to our predictions obtained from the refrac-
tive index profile of the fiber. For another set, we showed that
information about effective area versus wavelength may suffice
in place of full information about the refractive index profile, if
one assumes a Gaussian intensity profile for the optical mode.
This approach enabled us to rescale a Raman gain measurement

made for one pump wavelength to any other wavelength, using
only data for the effective area of a fiber.
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