79 research outputs found

    Real time statistical field theory

    Get PDF
    We have written a {\it Mathematica} program that calculates the integrand corresponding to any amplitude in the closed-time-path formulation of real time statistical field theory. The program is designed so that it can be used by someone with no previous experience with {\it Mathematica}. It performs the contractions over the tensor indices that appear in real time statistical field theory and gives the result in the 1-2, Keldysh or RA basis. We have used the program to calculate the ward identity for the QED 3-point function, the QED 4-point function for two photons and two fermions, and the QED 5-point function for three photons and two fermions. In real time statistical field theory, there are seven 3-point functions, 15 4-point functions and 31 5-point functions. We produce a table that gives the results for all of these functions. In addition, we give a simple general expression for the KMS conditions between nn-point green functions and vertex functions, in both the Keldysh and RA basesComment: 25 pages, 12 figure

    Results from the 4PI Effective Action in 2- and 3-dimensions

    Full text link
    We consider a symmetric scalar theory with quartic coupling and solve the equations of motion from the 4PI effective action in 2- and 3-dimensions using an iterative numerical lattice method. For coupling less than 10 (in dimensionless units) good convergence is obtained in less than 10 iterations. We use lattice size up to 16 in 2-dimensions and 10 in 3-dimensions and demonstrate the convergence of the results with increasing lattice size. The self-consistent solutions for the 2-point and 4-point functions agree well with the perturbative ones when the coupling is small and deviate when the coupling is large.Comment: 14 pages, 11 figures; v5: added numerical calculations in 3D; version accepted for publication in EPJ

    Techniques for calculations withnPI effective actions

    Get PDF
    We consider a symmetric scalar theory with quartic coupling in 2- and 3- dimensions and compare the self-consistent 4-point vertex obtained from the 4PI effective action with the Bethe-Salpeter 4-vertex from 2PI effective action. We show that when the coupling is large the contributions from the higher order effective action are large. We also show that one can solve the 2PI equations of motion in 4-dimensions, without introducing counter-terms, using a renormalization group method. This method provides a promising starting point to study the renormalization of higher order nPI theories

    Spontaneous Symmetry Breaking for Scalar QED with Non-minimal Chern-Simons Coupling

    Get PDF
    We investigate the two-loop effective potential for both minimally and non-minimally coupled Maxwell-Chern-Simons theories. The non-minimal gauge interaction represents the magnetic moment interaction between a charged scalar and the electromagnetic field. In a previous paper we have shown that the two loop effective potential for this model is renormalizable with an appropriate choice of the non-minimal coupling constant. We carry out a detailed analysis of the spontaneous symmetry breaking induced by radiative corrections. As long as the renormalization point for all couplings is chosen to be the true minimum of the effective potential, both models predict the presence of spontaneous symmetry breaking. Two loop corrections are small compared to the one loop result, and thus the symmetry breaking is perturbatively stable.Comment: Revtex 25 pages, 9 figure

    A Diagrammatic Interpretation of the Boltzmann Equation

    Get PDF
    We study nonlinear response in weakly coupled nonequilibrium ϕ4\phi^4 theory in the context of both classical transport theory and real time quantum field theory, based on a generalized Kubo formula which we derive. A novel connection between these two approaches is established which provides a diagrammatic interpretation of the Boltzmann equation.Comment: 5 pages in RevTex with 4 Postscript figure

    2PI Effective Action and Evolution Equations of N = 4 super Yang-Mills

    Full text link
    We employ nPI effective action techniques to study N = 4 super Yang-Mills, and write down the 2PI effective action of the theory. We also supply the evolution equations of two-point correlators within the theory.Comment: 16 pages, 6 figures. Figure 2 replaced, approximation scheme clarified, references adde

    Perturbative and Nonperturbative Kolmogorov Turbulence in a Gluon Plasma

    Full text link
    In numerical simulations of nonabelian plasma instabilities in the hard-loop approximation, a turbulent spectrum has been observed that is characterized by a phase-space density of particles n(p)pνn(p)\sim p^{-\nu} with exponent ν2\nu\simeq 2, which is larger than expected from relativistic 222\leftrightarrow 2 scatterings. Using the approach of Zakharov, L'vov and Falkovich, we analyse possible Kolmogorov coefficients for relativistic (m4)(m \ge 4)-particle processes, which give at most ν=5/3\nu=5/3 perturbatively for an energy cascade. We discuss nonperturbative scenarios which lead to larger values. As an extreme limit we find the result ν=5\nu=5 generically in an inherently nonperturbative effective field theory situation, which coincides with results obtained by Berges et al.\ in large-NN scalar field theory. If we instead assume that scaling behavior is determined by Schwinger-Dyson resummations such that the different scaling of bare and dressed vertices matters, we find that intermediate values are possible. We present one simple scenario which would single out ν=2\nu=2.Comment: published versio

    Scattering amplitudes at finite temperature

    Full text link
    We present a simple set of rules for obtaining the imaginary part of a self energy diagram at finite temperature in terms of diagrams that correspond to physical scattering amplitudes.Comment: 23 pages in Revtex, with 33 eps-figure

    Ward identity and electrical conductivity in hot QED

    Get PDF
    We study the Ward identity for the effective photon-electron vertex summing the ladder diagrams contributing to the electrical conductivity in hot QED at leading logarithmic order. It is shown that the Ward identity requires the inclusion of a new diagram in the integral equation for the vertex that has not been considered before. The real part of this diagram is subleading and therefore the final expressions for the electrical conductivity at leading logarithmic order are not affected.Comment: 25 pages with 5 eps figures, discussion in section 3 improved; to appear in JHE

    Two-loop Compton and annihilation processes in thermal QCD

    Get PDF
    We calculate the Compton and annihilation production of a soft static lepton pair in a quark-gluon plasma in the two-loop approximation. We work in the context of the effective perturbative expansion based on the resummation of hard thermal loops. Double counting is avoided by subtracting appropriate counterterms. It is found that the two-loop diagrams give contributions of the same order as the one-loop diagram. Furthermore, these contributions are necessary to obtain agreement with the naive perturbative expansion in the limit of vanishing thermal masses.Comment: Latex, 24 pages, postscript figures included with the package graphic
    corecore