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Abstract. We consider a symmetric scalar theory with quartic coupling in 2- and 3-

dimensions and compare the self-consistent 4-point vertex obtained from the 4PI effective

action with the Bethe-Salpeter 4-vertex from 2PI effective action. We show that when the

coupling is large the contributions from the higher order effective action are large. We

also show that one can solve the 2PI equations of motion in 4-dimensions, without in-

troducing counter-terms, using a renormalization group method. This method provides a

promising starting point to study the renormalization of higher order nPI theories.

1 Introduction

The resummation of certain classes of Feynman diagrams to infinite loop order is a useful method in

quantum field theory when there is no small expansion parameter and standard perturbative methods

do not apply. The nPI effective action formalism [1–7] is a non-perturbative approach in which the

action is expressed as a functional of n-point functions which are determined through self-consistent

stationary equations after the effective action is expanded to some order in the loop or 1/N expansion.

These self-consistent equations of motion resum certain classes of diagrams to infinite order. An

important application of the nPI effective theory is the calculation of transport coefficients [8, 9]. In

many cases, one needs to use a higher order (n > 2) effective action to obtain even leading order

transport coefficients [10–12]. A major problem with higher order nPI calculations is the issue of

renormalization. The renormalization of the 2PI effective theory requires introducing a set of vertex

counter-terms which obey different renormalization conditions and approach each other in the limit

that the order of the approximation is taken to infinity [13–16]. It is not known how to renormalize an

nPI theory for n > 2.

We calculate the self-consistent 4-vertex from a 4-Loop 4PI symmetric scalar theory with quartic

interaction in 3-dimensions, where there are no vertex divergences and renormalization requires only

a mass counter-term. We compare the result with the perturbative 4-vertex, and the Bethe-Salpeter

4-vertex obtained from the 2PI effective action. We find that all three vertices agree well when the

coupling is small. In addition, the 2PI and 4PI vertices agree well for certain (diagonal) momentum

configurations. For large coupling and non-diagonal momentum arguments, the three vertices differ

significantly. These results indicate that higher order effective actions can play an important role in

calculations of non-perturbative quantities.
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As a first step towards a 4-dimension 4PI calculation, we do a 4-dimension 2PI calculation using a

renormalization group (RG) technique, which allows us to perform the renormalization without using

counter-terms. We check our method by comparing the result with the traditional 2PI calculation. The

method is straightforward to extend to higher order nPI theories.

2 Notation

In most equations in this paper we suppress the arguments that denote the space-time dependence of

functions. As an example of this notation, the quadratic term in the action is written:

i

2

∫
d4x d4y ϕ(x)G−1

no·int(x − y)ϕ(y) −→
i

2
ϕG−1

no·intϕ . (1)

We use the notation Gno·int for the bare propagator because we reserve G0 for the propagator in the RG

calculation in the limit that the regulator goes to zero. The classical action is

S [ϕ] =
i

2
ϕG−1

no·intϕ −
i

4!
λϕ4 , iG−1

no·int = −(� + m2) . (2)

For notational convenience we use a scaled version of the physical coupling constant (λ phys = iλ).

The extra factor of i will be removed when rotating to Eucledian space to do numerical calculations.

The 4PI effective action is obtained from the Legendre transformation of the connected generating

functional:

Z[R1,R2,R3,R4] =

∫
[dϕ] Exp[i (S cl[ϕ] + R1ϕ +

1

2
R2ϕ

2 +
1

3!
R3ϕ

3 +
1

4!
R4ϕ

4)] , (3)

W[R1,R2,R3,R4] = −i LnZ[R1,R2,R3,R4] ,

Γ[φ,G,V3,V4] = W − R1

δW

δR1

− R2

δW

δR2

− R3

δW

δR3

− R4

δW

δR4

.

The 2PI effective action can be obtained from (3) by setting R3 = R4 = 0. Higher order effective

actions can be obtained by adding additional source terms. The Legendre transforms can be done

using the method of subsequent transformations [4, 5] which involves starting from an expression

for the 2PI effective action and exploiting the fact that the source terms R3 and R4 can be combined

with the corresponding bare vertex by defining a modified interaction vertex. We consider only the

symmetric theory for which odd n-point functions are zero. We write the result as a function of

renormalized variables without introducing additional subscripts:

Γ[φ,G,V] = Γno·int[φ,G] + Γint[φ,G,V] , (4)

Γno·int[φ,G] =
i

2
φG−1

no·intφ +
i

2
Tr ln G−1 +

i

2
TrG−1

no·intG ,

Throughout this paper we use the notation iΓ = Φ where both Γ and Φ carry the same subscripts or

superscripts. For example, for the 2PI effective action we write iΓ[φ,G] = Φ[φ,G], for the interacting

part of the 2PI effective action we have iΓint[φ,G] = Φint[φ,G], etc. We show the result for Φint, not

including counter-terms, for the symmetric 2PI and 4PI theories in Fig. 1. 2.

3 4PI in 3-dimensions

The self-consistent 2- and 4-point functions in the symmetric phase of the 4PI theory are obtained by

solving simultaneously the equations of motion:

δΓ[G,V]

δG

∣∣∣∣∣
G=G̃,V=Ṽ

= 0 ,
δΓ[G,V]

δV

∣∣∣∣∣
G=G̃,V=Ṽ

= 0 . (5)
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For the 2PI theory the effective action depends only on the self-consistent 2-point function, and we

have only the first equation in (5).

The equations of motion obtained from the 4-Loop 4PI theory are:

Σ(P) = i(δZP2 − δm2) +
1

2
(λ + δλ)

∫
dQ G(Q)

+
1

6
(λ + δλbb)

∫
dQ

∫
dK V(P,Q,K)G(Q)G(K)G(Q+ K + P) . (6)

V(Pa, Pb, Pc) = λ + δλ + Vs(Pa, Pb, Pc) + Vt(Pa, Pb, Pc) + Vu(Pa, Pb, Pc) ,

Vs(Pa, Pb, Pc) =
1

2

∫
dQ V(Pa, Pc,Q)G(Q)G(Q + Pa + Pc)V(Pb, Pd,−Q) , (7)

Vt(Pa, Pb, Pc) = Vs(Pa, Pc, Pb) ,

Vu(Pa, Pb, Pc) = Vs(Pa, Pb, Pd) , Pd = −(Pa + Pb + Pc) ,

where we have defined Σ = 2δΦ/δG. The equation of motion for the 2-point function has been

simplified using the eom for the 4-point function, which allows one to cancel the 3-loop diagram

which would otherwise appear.

Although the 2PI effective action does not explicitly contain a 4-vertex, it is well known that it can

be used to obtain a non-perturbative 4-point vertex called the Bethe-Salpeter (BS) vertex [13]. The

equation that determines the 2PI BS vertex is obtained by calculating the functional derivatives of the

2PI effective action with respect to the 2-point function and the bilocal source. We give here only the

result, for further details see [17]. We consider systems in thermal equilibrium for which the system

is invariant under space-time translations. We define the 4-kernel Λ = 4δ2Φint/δG
2 and write the BS

equation in momentum space as:

M(P,−P,Q,−Q) = Λ(P,−P,Q,−Q) +
1

2

∫
dK Λ(P,−P,K,−K)G2(K)M(K,−K,Q,−Q) . (8)

Equation (8) is shown diagrammatically in figure 2.

We solve the self-consistent equations of motion for the 2- and 4-point functions in Euclidean

space using a numerical lattice method, for details see [18, 19]. There are no ultra-violet divergences

in the 4-point vertices in less than four dimensions, and therefore we set the coupling strength counter-

term to zero, i.e., δλ = 0. For the 2-point function, the only fundamental divergences are the tadpole

and sunset diagrams. The tadpole diagram has a momentum independent divergence in 2D and is

finite in 3D. The sunset diagram is finite in 2D and has a momentum independent divergence in 3D.

Since we have no momentum dependent divergences, we can also set δZ = 0 and renormalize the

propagator with the counter-term δm2. To determine this counter-term we use the renormalization

condition Σ(0) = 0, which means we can drop the tadpole diagram. Note that if one expands the

equation of motion for the 4-vertex V obtained from the 4PI effective action, or the equation for

the BS vertex from the 2PI effective action, each self-energy insertion is accompanied by the mass

counter-term that makes it finite, and therefore there are no sub-divergences. In Fig. 3 we show some

of our results. At large coupling, the 4PI vertex differs significantly from the 2PI and perturbative

ones.

4 2PI in 4-dimensions

In 4-dimensions, we do not know how to renormalize the 4PI theory, but we can work in 4-dimensions

at the 2PI level. To perform the renormalization, one starts by adding counter-terms to each local, mass
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dimension 4 operator in the effective action

ΦΔ =
1

4!
Δλ4φ

4 +
1

4
Δλtpφ

2G +
1

8
ΔλetG

2 . (9)

In addition, one includes the usual counter-terms in the skeleton expansion of the effective action, to

the approximation order. For example, to order λ3 we have:

Φct = −
i

2
(δZ2� + δm

2
2)φ2 −

i

2
(δZ0� + δm

2
0)TrG +

1

4!
δλ′4φ

4 +
1

4
δλ′tpφ

2G

+
1

3
λ δλeggφ

2G3 +
1

8
δλ′etG

2 +
1

24
δλbbλG

3 + O(λ4) . (10)

Primes are used for counter-terms which have partners in (9). We define

δλ4 = δλ
′
4 + Δλ4 , δλtp = δλ

′
tp + Δλtp , δλet = δλ

′
et + Δλet . (11)

The coupling counter-terms in Φct are chosen to cancel divergences in the integrals in the 4-kernels,

and the coupling counter-terms in ΦΔ cancel the remaining divergences in the resummed 4-point

vertices. The 4-kernels are divergent (for example Λ = Δλet + Λ f where Λ f is the quantity that is

made finite by λ′et + λbb + · · · ), but this is not a problem since the 4-kernels are not directly related

to physical quantities. The 2-point functions contain coupling constant counter-terms that must be

obtained self-consistently from the BS equation.

In the truncated theory, the different n-point functions are not the same, and similarly the counter-

terms which are differentiated by subscripts are not the same. Renormalizability requires only that

the untruncated (exact) theory contains one mass counter-term, one wave-function renormalization

counter-term and one coupling constant counter-term, which produce one renormalized 2-point func-

tion and one renormalized 4-point function. The counter-terms introduced in (9 - 11) must therefore

satisfy {δm2
2
, δm2

0
} → δm2, {δZ2, δZ0} → δZ and {δλ4, δλtp, δλegg, δλet, δλbb · · · } → δλ when the or-

der of the approximation is taken to infinity. In this paper we consider only the symmetric theory

at the 4-Loop level, and therefore we only need the counter-terms δm2
0
, δZ0 and δλet. We use the

renormalization conditions:

−iG−1(0) = m2 , −i
d

dP2
G−1

∣∣∣∣∣
P=0

= −1 , M(0, 0) = λ ,

where the notation (0), (0, 0), etc., indicates that all momentum components of each leg are set to zero.

5 Renormalization Group method

Using the functional renormalization group method, we do not use counter-terms but instead we add

to the action in (2) a non-local regulator term

S κ[ϕ] = S [ϕ] + ΔS κ[ϕ] , ΔS κ[ϕ] = −
1

2
R̂κϕ

2 . (12)

The bare mass and coupling are defined at an ultra-violet scale μ which must be specified (we use

μ instead of the traditional Λ because that letter has already been used for the 4-point kernel). The

parameter κ has dimensions of momentum and the regulator R̂κ(Q) is chosen to have the following

properties: when Q � κ, R̂κ(Q) ∼ κ2, and when Q ≥ κ, R̂κ(Q) → 0. The effect is therefore that (1)

for Q � κ the regulator is a large mass term which suppresses quantum fluctuations with wavelengths

1/Q � 1/κ and; (2) fluctuations with Q � κ and wavelengths 1/Q � 1/κ are not affected by the

presence of the regulator.
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The n-point functions of the theory depend on the parameter κ and the goal is to calculate them

in the limit κ → 0, where the full quantum theory is restored. One obtains a hierarchy of coupled

differential ‘flow’ equations for the derivatives of the n-point functions with respect to κ. The formal

relationship between the RG method and 2PI theories has been studied in [23–26], and the connec-

tion with higher nPI theories was developed in [27]. We will show that when the 2PI effective action

is used, the hierarchy of flow equations is truncated when the effective action is. There are several

advantages to truncating at the level of the effective action. One is that it is straightforward to system-

atically extend the order of the approximation. Another is that the truncation respects the symmetries

of the original theory, to the order of the approximation [21, 22]. To solve the flow equations, one

chooses μ large enough that when κ = μ the theory is classical and the 2- and 4-point functions are

known functions of the bare parameters. The flow equations can then be integrated from the scale

κ = μ, using the known classical solutions as boundary conditions, to the scale κ = 0, at which the

desired quantum solutions are obtained.

A fundamental technical difficulty with the RG formalism is created by the fact that the renormal-

ization conditions are defined in terms of the quantum (κ → 0) n-point functions, which are obtained

only after the calculation is finished. We want to specify chosen values for the renormalized mass and

coupling, but the required calculational input is the bare parameters, not the renormalized ones. An

arbitrary choice of the bare parameters will not produce the chosen renormalized parameters, and we

do not know in advance which choice of bare parameters will. We must “tune" the bare parameters,

so that the renormalized mass and coupling that are produced by the calculation are the ones that were

orginally specified.

The 2PI effective action in the FRG formalism is obtained from equations (3) using the regulated

action (12):

Zκ[R1,R2] =

∫
[dϕ] exp

{
i
(
S [ϕ] + R1ϕ +

1

2
R2ϕ

2 −
1

2
R̂κϕ

2
)}
, (13)

Wκ[R1,R2] = −i ln Zκ[R1,R2] , (14)

δWκ[R1,R2]

δR1

= 〈ϕ〉 ≡ φ ,
δWκ[R1,R2]

δR2

=
1

2
〈ϕ2〉 =

1

2
(φ2 +G) . (15)

The expectation values are calculated in the presence of the regulator and therefore depend on the

parameter κ, which means that the relations between (φ,G) and (R1,R2) are κ-dependent. The 2PI

effective action is obtained by taking the double Legendre transform of the generating functional

Wκ[R1,R2] with respect to the sources R1 and R2 and taking φ and G as the independent variables (see

equation (3)):

Γ̂κ[φ,G] = Wκ − R1

δWκ

δR1

− R2

δWκ

δR2

= Wκ − R1φ −
1

2
R2(φφ +G) . (16)

After performing the Legendre transform, the functional arguments of the effective action φ and G

are independent of the regulator function and the parameter κ, but the non-interacting propagator does

depend on κ. We define

iG−1
no·int·κ = iG−1

no·int − R̂κ = −� − (m2 + R̂k) . (17)

It is useful to define an effective action that corresponds to the original classical action at the scale μ:

Γκ = Γ̂κ − ΔS κ(φ) . (18)
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To make the equations look nicer we define an imaginary regulator function Rκ = −iR̂κ (the extra

factor i will be removed when we rotate to Eucledian space to do the numerical calculation). The

regulated 2PI effective action satisfies the flow equation [28]:

∂κΦκ =
1

2
∂κRκ

(
〈ϕ2〉 − φ2) = 1

2
∂κRκG . (19)

This result has the same form for any nPI effective action. The difference in the flow equations for

different effective actions is contained in the definition of the expectation values.

A hierarchy of flow equations can be obtained by taking functional derivatives of (19). Using the

1PI effective action (19) becomes

∂κΦ1PI·κ = −
1

2
∂κRκ

[
δ2Φ1PI·κ

δφ2
+ Rk

]−1

. (20)

and taking derivatives with respect to φ produces the well known infinite hierarchy of functional

renormalization group equations. Practical calculations require a truncation of this hierarchy and

there is a priori no clear way to decide how to perform this truncation.

Using a similar method we can obtain flow equations for the kernels obtained from the regulated

2PI effective action. We define (κ dependent) kernels

Φ
(n,m)

int·κ
= 2m δ

n

δφn

δm

δGm
Φint

∣∣∣∣∣G=Gκ
φ=o

. (21)

Functionally differentiating (19) produces an infinite hierarchy of coupled equations for the flow of

these kernels:

∂κΦ
(n,m)

intκ

∣∣∣∣∣G=Gκ
φ=o

=
1

2
∂κ (Rκ + Σκ) G2

κ ∂κΦ
(n,m+1)

intκ

∣∣∣∣∣G=Gκ
φ=o

. (22)

The self-consistent 2-point function which solves the equation of motion depends on κ, and therefore

we do not need to use a tilde to denote the self-consistent solution (as we did in the 2PI calculation),

but write it instead as Gκ.

Equation (22) gives a series of infinite hierarchies of coupled equations for the 2PI kernels in which

kernels with fixed n and different m are coupled together. However, unlike the hierarchy produced

from the 1PI effective action, when the 2PI effective action is truncated at some finite loop order, the

hierarchy in (22) is also truncated.

We consider the symmetric theory and give the first two flow equations including terms up to order

λ2 in the skeleton expansion. In Eucledian space we obtain

∂κΣκ(P) =
1

2

∫
dQ∂κ

(
Σκ(Q) + Rκ(Q)

)
G2
κ(Q)Λκ(Q, P) , (23)

∂κΛκ(P,K) =
1

2

∫
dQ ∂κ

[
Rκ(Q) + Σκ(Q)

]
G2
κ(Q)Λ03

κ (Q, P,K) . (24)

Using (n,m) = (0, 3) can write an equation for the flow of the kernel Λ03
κ of the form ∂κΛ

03
κ ∼∫

dQ ∂κGκΛ
04
κ . At the level of our approximation however, the kernel Λ04

κ is a constant, and therefore

the right side of the equation for ∂κΛ
03
κ is an exact differential which can be integrated directly. The

integration constant must be set to zero because there is no 6-vertex in the Lagrangian. Equivalently,

one can simply obtain Λ03
κ directly from the effective action using (21):

Λ03(Q, P,K) (25)

= −λ2(Gκ(Q + P + K) +Gκ(Q + P − K) +Gκ(Q − P + K) + Gκ(Q − P − K)
)
.
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In order to solve these flow equations, one must specify the boundary conditions from which the

flow starts at κ = μ. These boundary conditions must be consistent with the renormalization conditions

that we want to impose at the κ = 0 end of the flow. One can show [20] that the boundary conditions

G−1
μ = Zμ(P

2 + m2
μ) , Λμ(P,Q) = −λμ (26)

are consistent with the renormalization conditions analogous to (12).

The equations (23, 24, 25) can be solved simultaneously using the boundary conditions (26). The

momentum integral in (24) is completely finite except for a momentum independent piece which

can be absorbed into the integration constant. Similarly, the momentum integral in (23) is finite

except for a momentum independent divergence that can be absorbed into the definition of mμ. The

result is therefore that all of the divergent contributions have been absorbed into the definitions of the

parameters mμ and λμ. For a given choice of the function Rκ, the theory is completely specified by the

flow equations and the initial conditions, and one may “forget” their origins from a functional integral.

In fact, since the integral on the right side of the flow equation (24) is finite and the integration constant

is known, we do not need to solve the flow equation for Λκ, but can write directly:

Λκ(P,Q) = −λμ +
λ2

2

∫
dQ Gκ(Q)

[
Gκ(Q + P − K) +Gκ(Q + P + K)

]
. (27)

It is easy to see that this expression satisfies (24) together with (25). One can also verify that (27)

satisfies the boundary condition (26), by showing that in the limit μ� {P,K} the integral reduces to a

constant, which can be absorbed into the definition of λμ.

The expression in equation (27) is just the 2PI kernel with the tree term replaced by the vertex

λμ. However, we can not start from some kind of similarly modified 2PI expression for Σκ, because

the flow equation for the 2-point function (23) contains a embedded sub-divergence which cannot be

removed unless Λκ is calculated self-consistently from its flow equation.

6 Numerical Technique

In order to do the numerical calculation, we restrict to a box in co-ordinate space of finite volume L3β.

Fourier transforming to momentum space one obtains discrete frequencies and momenta. This can be

written

∫
dp4

2π

3∏
i=1

∫ ∞

−∞

dpi

2π
f (p4, pi) →

mtm
3
s

(2π)4

Nt
2∑

n4=−
Nt
2
+1

3∏
i=1

Ns
2∑

ni=−
Ns
2
+1

f (mtn4,msni) , (28)

mt = 2πT = 2π/(Ntat) , ms = 2πL−1 = 2π/(Nsas) , L = asNs , T = 1/atNt . (29)

The parameters at and as are the lattice spacing in the temporal and spatial directions. Indices which

fall outside of the range {−N/2+ 1,N/2} are wrapped inside using periodic boundary conditions. The

scalar φ4 theory in 4-dimensions is non-interacting if it is considered as a fundamental theory valid

for arbitrarily high momentum scales (quantum triviality), but the renormalized coupling is non-zero

if the theory has an ultra-violet cutoff and an infra-red regulator. In our calculation the lattice spacing

parameters at and as provide an ultra-violet cutoff for the p4 and pi momentum integrals, and the mass

m regulates the momentum integrals in the infra-red. The theory has a Landau pole at a scale which

decreases as the coupling increases and, in order to avoid unphysical behaviour, the ultra-violet cut

off must be less than the scale at which the Landau pole appears. This means that problems will occur

when λ is very large, or as is very small.
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We will do the numerical calculations using the renormalized parameters m = 1 and λ = 1. We

choose Ns = 32, and L = asNs = 2. The renormalization is done with Nt = 128, at = 1/16, and finite

temperature calculations are done with 126 ≥ Nt ≥ 8. All calculations are done using fast Fourier

transforms, to improve performance. We use at = 1/16, as = 1/16, Ns = 32 and renormalize the

theory at T0 = (Nmax
t at)

−1. The maximum value of Nt is limited by computation time and memory.

We use Nmax
t =128 which gives T0 = 0.125. In the RG calculation we use μ = 100 and solve the flow

equations in Nκ = 50 steps down to κmin = 0.01. We have checked that the RG results are unchanged

if κmin is reduced or μ is increased. To study finite temperatures we use a range of values for Nt such

that

T0 =
[
atN

max
t

]−1
� m < Tmax =

[
atN

min
t

]−1
. (30)

We use Nmin
t = 8 which gives Tmax = 2m.

Figure 4 shows the inverse 2-point function and Bethe-Salpeter vertex as functions of temperature.

The 2PI and RG calculations agree well, which shows that the 2PI calculation can be done without

counter-terms by using a RG regulator and solving the flow equations. From the plot of G−1(0) versus

T we see that

T0 � T ∗ ≡ m(T ∗) ≈ 1 , (31)

which verifies that Nt = 128 can be taken as the zero temperature limit.

We test the renormalization by reducing the lattice spacing in the spatial direction (as) while

holding the spatial length of the box (L = asNs) fixed. In Fig. 5 we plot M(0, x, 0, 0) versus log 1/as for

x = 0 and x = N/4. For comparison, we repeat the 2PI calculation using an incorrect renormalization

procedure, by adding vertex counter-terms (λ → λ + δλ) to the basketball diagram (see Fig. 1).

The graph shows that in the incorrect calculation, M(0, x, 0, 0) changes with as. The 2PI and RG

calculations are almost flat, which shows that the renormalization is done correctly. When as becomes

very small, the curves in the figure bend, because of the influence of the Landau pole.

7 Conclusions

The method that has been used to renormalize the 2PI effective action cannot be used with higher order

effective actions. On the other hand, it is reasonable to hope that the RG method we have developed in

this paper might be applicable to higher order nPI theories. The number of bare parameters is fixed by

the structure of the Lagrangian, and a complicated interdependent set of counter-terms is replaced by

a hierarchy of flow equations that are straightforward to derive using the technique developed in this

paper. Renormalization conditions can be enforced on higher order Bethe-Salpeter equations [17].

The RG formalism therefore appears to be a promising approach to the renormalization of higher

order nPI theories.
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Figure 1. The interacting part of the 4-Loop 4PI effective action, not including counter-terms. Solid dots repre-

sent self-consistent vertices and open circles are bare vertices. The corresponding expression for the 2PI effective

action can be obtained by replacing the self-consistent vertices with bare ones.
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Figure 2. Diagrammatic representation of the BS equation in equation (8). Grey boxes and boxes with oblique

lines in them represent the vertex M and kernel Λ, respectively.

Figure 3. (color online). Comparison of V and M as functions of the coupling strength λ. All the momentum

arguments are chosen to be vanishing. The calculations are done in 2D with N = 16, 12, and 8 (left panel), and

in 3D with N = 12, 10, and 8 (right panel). For comparison we also show the perturbative result in each graph,

which is the dotted line joining round markers (red).
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Figure 4. The inverse propagator G−1(0, x, 0, 0)/G−1
no·int

(0, x, 0, 0) and Bethe-Salpeter vertex M(0, x, 0, 0) as func-

tions of the temperature, for two different choices of momentum x, from the RG and 2PI calculations. In both

panels the solid (black) curve is the RG calculation and the dashed (blue) curve is the 2PI calculation. The top

two lines are x = N/4, and the bottom two lines are x = 0. In all cases, the 2PI curves lie almost exactly on top

of the corresponding RG ones.
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Figure 5. The dependence of M(0, x, 0, 0) on the lattice separation in the spatial directions, for the RG calculation,

the 2PI calculation, and an incorrect version of the 2PI calculation which is included for comparison. The

temperature is 2.0 in mass units. The RG, 2PI and incorrect 2PI calculations are respectively the solid (black),

dashed (blue) and dotted (red) lines. The top three curves are x = N/4 and the bottom three are x = 0.
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