63 research outputs found

    GAS RECOMBINATION SYSTEM OF THE LOS ALAMOS HOMOGENEOUS REACTOR

    Full text link

    Spin dynamics simulations of the magnetic dynamics of RbMnF3_3 and direct comparison with experiment

    Full text link
    Spin-dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of the classical Heisenberg antiferromagnet in simple cubic lattices with linear sizes L≀60L\leq 60. This system is widely recognized as an appropriate model for the magnetic properties of RbMnF3_3. Time-evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using a new algorithm implemented by Krech {\it etal}, which is based on fourth-order Suzuki-Trotter decompositions of exponential operators. The dynamic structure factor was calculated from the space- and time-displaced spin-spin correlation function. The crossover from hydrodynamic to critical behavior of the dispersion curve and spin-wave half-width was studied as the temperature was increased towards the critical temperature. The dynamic critical exponent was estimated to be z=(1.43±0.03)z=(1.43\pm 0.03), which is slightly lower than the dynamic scaling prediction, but in good agreement with a recent experimental value. Direct, quantitative comparisons of both the dispersion curve and the lineshapes obtained from our simulations with very recent experimental results for RbMnF3_3 are presented.Comment: 30 pages, RevTex, 9 figures, to appear in PR

    Spin-dynamics simulations of the triangular antiferromagnetic XY model

    Full text link
    Using Monte Carlo and spin-dynamics methods, we have investigated the dynamic behavior of the classical, antiferromagnetic XY model on a triangular lattice with linear sizes L≀300L \leq 300. The temporal evolutions of spin configurations were obtained by solving numerically the coupled equations of motion for each spin using fourth-order Suzuki-Trotter decompositions of exponential operators. From space- and time-displaced spin-spin correlation functions and their space-time Fourier transforms we obtained the dynamic structure factor S(q,w)S({\bf q},w) for momentum q{\bf q} and frequency ω\omega. Below TKTT_{KT}(Kosterlitz-Thouless transition), both the in-plane (SxxS^{xx}) and the out-of-plane (SzzS^{zz}) components of S(q,ω)S({\bf q},\omega) exhibit very strong and sharp spin-wave peaks. Well above TKTT_{KT}, SxxS^{xx} and SzzS^{zz} apparently display a central peak, and spin-wave signatures are still seen in SzzS^{zz}. In addition, we also observed an almost dispersionless domain-wall peak at high ω\omega below TcT_{c}(Ising transition), where long-range order appears in the staggered chirality. Above TcT_{c}, the domain-wall peak disappears for all qq. The lineshape of these peaks is captured reasonably well by a Lorentzian form. Using a dynamic finite-size scaling theory, we determined the dynamic critical exponent zz = 1.002(3). We found that our results demonstrate the consistency of the dynamic finite-size scaling theory for the characteristic frequeny ωm\omega_{m} and the dynamic structure factor S(q,ω)S({\bf q},\omega) itself.Comment: 8 pages, RevTex, 10 figures, submitted to PR

    CDMS, Supersymmetry and Extra Dimensions

    Get PDF
    The CDMS experiment aims to directly detect massive, cold dark matter particles originating from the Milky Way halo. Charge and lattice excitations are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK, allowing to separate nuclear recoils from the dominating electromagnetic background. The operation of 12 detectors in the Soudan mine for 75 live days in 2004 delivered no evidence for a signal, yielding stringent limits on dark matter candidates from supersymmetry and universal extra dimensions. Thirty Ge and Si detectors are presently installed in the Soudan cryostat, and operating at base temperature. The run scheduled to start in 2006 is expected to yield a one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on sources and detection of dark matter and dark energy in the universe, Marina del Rey, Feb 22-24, 200

    Observing the First Stars and Black Holes

    Full text link
    The high sensitivity of JWST will open a new window on the end of the cosmological dark ages. Small stellar clusters, with a stellar mass of several 10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun should be directly detectable out to redshift z=10, and individual supernovae (SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible beyond this redshift. Dense primordial gas, in the process of collapsing from large scales to form protogalaxies, may also be possible to image through diffuse recombination line emission, possibly even before stars or BHs are formed. In this article, I discuss the key physical processes that are expected to have determined the sizes of the first star-clusters and black holes, and the prospect of studying these objects by direct detections with JWST and with other instruments. The direct light emitted by the very first stellar clusters and intermediate-mass black holes at z>10 will likely fall below JWST's detection threshold. However, JWST could reveal a decline at the faint-end of the high-redshift luminosity function, and thereby shed light on radiative and other feedback effects that operate at these early epochs. JWST will also have the sensitivity to detect individual SNe from beyond z=10. In a dedicated survey lasting for several weeks, thousands of SNe could be detected at z>6, with a redshift distribution extending to the formation of the very first stars at z>15. Using these SNe as tracers may be the only method to map out the earliest stages of the cosmic star-formation history. Finally, we point out that studying the earliest objects at high redshift will also offer a new window on the primordial power spectrum, on 100 times smaller scales than probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and Concurrent Facilities", Astrophysics & Space Science Library, Eds. H. Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008

    Demonstration of surface electron rejection with interleaved germanium detectors for dark matter searches

    Get PDF
    The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Surface event rejection capabilities were tested with two 210 Pb sources producing ∌130 beta decays/hr. In ∌800 live hours, no events leaked into the 8–115 keV signal region, giving upper limit leakage fraction 1.7 × 10−5 at 90% C.L., corresponding to < 0.6 surface event background in the future 200-kg SuperCDMS SNOLAB experiment

    Energy loss due to defect formation from 206Pb recoils in SuperCDMS germanium detectors

    Get PDF
    The Super Cryogenic Dark Matter Search experiment at the Soudan Underground Laboratory studied energy loss associated with defect formation in germanium crystals at mK temperatures using in situ 210Pb sources. We examine the spectrum of 206Pb nuclear recoils near its expected 103 keV endpoint energy and determine an energy loss of (6:08 ± 0:18)%, which we attribute to defect formation. From this result and using TRIM simulations, we extract the first experimentally determined average displacement threshold energy of 19.7+0.6−0.5 eV for germanium. This has implications for the analysis thresholds of future germanium-based dark matter searches

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore