155 research outputs found

    The Bogoliubov Theory of a BEC in Particle Representation

    Full text link
    In the number-conserving Bogoliubov theory of BEC the Bogoliubov transformation between quasiparticles and particles is nonlinear. We invert this nonlinear transformation and give general expression for eigenstates of the Bogoliubov Hamiltonian in particle representation. The particle representation unveils structure of a condensate multiparticle wavefunction. We give several examples to illustrate the general formalism.Comment: 10 pages, 9 figures, version accepted for publication in Phys. Rev.

    Coherent Control of Stationary Light Pulses

    Full text link
    We present a detailed analysis of the recently demonstrated technique to generate quasi-stationary pulses of light [M. Bajcsy {\it et al.}, Nature (London) \textbf{426}, 638 (2003)] based on electromagnetically induced transparency. We show that the use of counter-propagating control fields to retrieve a light pulse, previously stored in a collective atomic Raman excitation, leads to quasi-stationary light field that undergoes a slow diffusive spread. The underlying physics of this process is identified as pulse matching of probe and control fields. We then show that spatially modulated control-field amplitudes allow us to coherently manipulate and compress the spatial shape of the stationary light pulse. These techniques can provide valuable tools for quantum nonlinear optics and quantum information processing.Comment: 27 pages, 10 figure

    Cooling atoms in an optical trap by selective parametric excitation

    Get PDF
    We demonstrate the possibility of energy-selective removal of cold atoms from a tight optical trap by means of parametric excitation of the trap vibrational modes. Taking advantage of the anharmonicity of the trap potential, we selectively remove the most energetic trapped atoms or excite those at the bottom of the trap by tuning the parametric modulation frequency. This process, which had been previously identified as a possible source of heating, also appears to be a robust way for forcing evaporative cooling in anharmonic traps.Comment: 5 pages, 5 figure

    Quantum-Noise Reduction in a Driven Cavity with Feedback

    Get PDF
    We show that amplitude-squeezed states may be produced by driving a feedback-controlled cavity with a coherent input signal. The feedback controls the transmissivity of one output from the cavity and is essentially equivalent to nonlinear absorption. The cavity effectively acts as a nonlinear reflector. Hence, amplitude-squeezed states with arbitrarily strong coherent intensities can be obtained

    Conservative management of mallet injuries:A national survey of current practice in the UK

    Get PDF
    Introduction Mallet injuries are common, and usually treated conservatively. Various systematic reviews have found a lack of evidence regarding best management and it is unclear whether this uncertainty is reflected in current UK practice. Methods An online survey was developed to determine current practice for the conservative treatment of mallet injury amongst specialist hand clinicians in the UK, including physiotherapists, occupational therapists and surgeons. Clinician’s views of study outcome selection were also explored to improve future trials. Results 336 professionals completed the survey. Inconsistency in overall practice was observed in splint type choice, time to discharge to GP, and the assessment of adherence. Greater consistency was observed for recommended duration of continuous immobilisation. Bony injuries were most commonly splinted for six weeks (n=228, 78%) and soft tissue injuries for either eight weeks (n=172, 56%) or six weeks (n=119, 39%). Postimmobilisation splinting was frequently recommended, but duration varied between two and 10 weeks. The outcome rated as most important by all clinicians was patient satisfaction. Discussion There is overall variation in the current UK conservative management of mallet injuries, and the development of a standardised, evidence based protocol is required. Clinicians’ opinions may be used to develop a core set of outcome measures, which will improve standardisation and comparability of future trials.</p

    Feedback-control of quantum systems using continuous state-estimation

    Full text link
    We present a formulation of feedback in quantum systems in which the best estimates of the dynamical variables are obtained continuously from the measurement record, and fed back to control the system. We apply this method to the problem of cooling and confining a single quantum degree of freedom, and compare it to current schemes in which the measurement signal is fed back directly in the manner usually considered in existing treatments of quantum feedback. Direct feedback may be combined with feedback by estimation, and the resulting combination, performed on a linear system, is closely analogous to classical LQG control theory with residual feedback.Comment: 12 pages, multicol revtex, revised and extende

    Interpretation of quantum jump and diffusion-processes illustrated on the Bloch sphere

    Get PDF
    It is shown that the evolution of an open quantum system whose density operator obeys a Markovian master equation can in some cases be meaningfully described in terms of stochastic Schrödinger equations (SSE’s) for its state vector. A necessary condition for this is that the information carried away from the system by the bath (source of the irreversibility) be recoverable. The primary field of application is quantum optics, where the bath consists of the continuum of electromagnetic modes. The information lost from the system can be recovered using a perfect photodetector. The state of the system conditioned on the photodetections undergoes stochastic quantum jumps. Alternative measurement schemes on the outgoing light (homodyne and heterodyne detection) are shown to give rise to SSE’s with diffusive terms. These three detection schemes are illustrated on a simple quantum system, the two-level atom, giving new perspectives on the interpretation of measurement results. The reality of these and other stochastic processes for state vectors is discussed

    Approach to the semiconductor cavity QED in high-Q regimes with q-deformed boson

    Full text link
    The high density Frenkel exciton which interacts with a single mode microcavity field is dealed with in the framework of the q-deformed boson. It is shown that the q-defomation of bosonic commutation relations is satisfied naturally by the exciton operators when the low density limit is deviated. An analytical expression of the physical spectrum for the exciton is given by using of the dressed states of the cavity field and the exciton. We also give the numerical study and compare the theoretical results with the experimental resultsComment: 6 pages, 2 figure

    Adiabatic Output Coupling of a Bose Gas at Finite Temperatures

    Get PDF
    We develop a general theory of adiabatic output coupling from trapped atomic Bose-Einstein Condensates at finite temperatures. For weak coupling, the output rate from the condensate, and the excited levels in the trap, settles in a time proportional to the inverse of the spectral width of the coupling to the output modes. We discuss the properties of the output atoms in the quasi-steady-state where the population in the trap is not appreciably depleted. We show how the composition of the output beam, containing condensate and thermal component, may be controlled by changing the frequency of the output coupler. This composition determines the first and second order coherence of the output beam. We discuss the changes in the composition of the bose gas left in the trap and show how nonresonant output coupling can stimulate either the evaporation of thermal excitations in the trap or the growth of non-thermal excitations, when pairs of correlated atoms leave the condensate.Comment: 22 pages, 6 Figs. To appear in Physical Review A All the typos from the previous submission have been fixe

    Ponderomotive entangling of atomic motions

    Get PDF
    We propose the use of ponderomotive forces to entangle the motions of different atoms. Two situations are analyzed: one where the atoms belong to the same optical cavity and interact with the same radiation field mode; the other where each atom is placed in own optical cavity and the output field of one cavity enters the other.Comment: Revtex file, five pages, two eps figure
    • …
    corecore