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We show that amplitude-squeezed states may be produced by driving a feedback-controlled cav-
ity with a coherent input signal. The feedback controls the transmissivity of one output from the
cavity and is essentially equivalent to nonlinear absorption. The cavity effectively acts as a nonlin-
ear reflector. Hence, amplitude-squeezed states with arbitrarily strong coherent intensities can be

obtained.
PACS number(s): 42.50.Dv, 42.50.Ar, 42.50.Lc

I. INTRODUCTION

Feedback has long been used to stabilize the operation
of optical cavities and lasers. Recently Yamamoto and
co-workers [1] demonstrated that feedback could be used
to reduce the intensity fluctuations in the light emitted
by a semiconductor laser. In their experiment, the light
from the laser illuminated a photodetector and the result-
ing photocurrent was fed back to the injection current of
the laser. The in-loop field, that is, the light between the
laser and the photodetector, does exhibit sub-shot-noise
statistics, however, it is difficult to extract this field to
exploit the reduced noise properties in applications. To
overcome this problem Wiseman and Milburn [3] pro-
posed a model in which the transmissivity of one output
coupler from a laser cavity is controlled by a feedback
circuit similar to that of Yamamoto and co-workers. The
light leaving the cavity through the feedback-controlled
output coupler falls on a photodetector and the result-
ing current used to control the transmissivity at the out-
put. However, unlike the scheme of Yamamoto and co-
workers, this scheme includes another cavity output port
from which a sub-shot-noise light field may be extracted.

In both the laser feedback schemes described above
the light produced has reduced intensity noise but, as is
typical of lasing devices, the noise is phase independent.
Squeezed states are a more general class of states of the
field for which the noise is very phase dependent. Such
states can exhibit either reduced intensity fluctuations or
reduced phase fluctuations. It is the purpose of this paper
to show that the feedback model of Wiseman and Mil-
burn can be used to produce squeezed states. To achieve
this we consider an empty, externally driven feedback-
controlled cavity. The cavity thus becomes a nonlinear
reflector as far as the input light is concerned. The non-
linearity, in fact, appears as nonlinear absorption.

The cavity, of course, may be designed to operate at
whatever the laser input frequency is. This flexibility
is one of the great attractions of producing squeezed
states in this way. One does not need to rely on the
frequency restrictions of a particular nonlinear optical
material. Feedback enables one to engineer the nonlin-
earity at any frequency. The other advantage comes from
the fact that the squeezing is induced on a field which has
a large coherent amplitude. The theoretical description
of the model is based on a model of feedback control of a
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travelling wave proposed by Shapiro and co-workers [2],
and the general theory of photodetection from an optical
cavity, given by Srinivas and Davies [4].

II. QUANTUM THEORY OF FEEDBACK-
CONTROLLED CAVITY TRANSMISSIVITY

In Fig. 1 we indicate schematically the feedback sys-
tem. The cavity has two outputs. The transmissivity
of one output is controlled by a current derived from a
photodetector illuminated by the light leaving through
that port. The current controlled beam splitter may be
realized in a number of ways using acousto-optic mod-
ulators and perhaps polarizing filters. A more detailed
discussion of the experimental realization will be given
in a future paper. The other output of the cavity is illu-
minated by a strong coherent field. As we now show, the
input field sees a cavity containing an effective nonlinear
absorber due to the feedback, where the ouput transmis-
sivity is increased with increasing detection rate at the
photodetector. The zero-feedback damping rates at the
input coupler and feedback controlled coupler are 7y, and
~1, respectively.

The count rate at the photodetector is determined by a
count superoperator A(t), which depends on the counting
history through

A(t) = Ao (1 +A /_ ; e“ﬂ("‘“)A(u)) , (2.1)
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FIG. 1. A schematic representation of the cavity with

feedback model where p.d. denotes the photodetector. The
modes bin and boyut denote the input and output fields, respec-
tively.
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where

Ao =mT (2:2)
and

Jp = apal (2.3)

is the count superoperator in the absence of the feedback
circuit. The quantity A is a dimensionless parameter
determining the strength of the feedback, and % is the
memory parameter . This feedback model was motivated
by a classical Markovian self-exciting point process [3]. If
we iterate Eq. (2.1) we find that the count superoperator
defines a stationary count process. The count superop-
erator is given by

A=mT > x"I™, (24)
n=0
where
mA
= 2.5
3 (2.5)

is the feedback parameter. This equation converges pro-
vided

Tr(Ix|Tp) < 1.

This is effectively a restriction on the allowed photon

(2.6)

number for physically acceptable solutions. Equation
(2.4) is the series expansion for
A
A=nJ |1+ —ﬂ—A . (2‘7)

The mean count rate is determined by a rate operator
(not a superoperator) R, defined by

I Te(oR) = Te(h0), (2.8)
|
OP(a,t)

_ O s8N\ . 2(06 O
ot _{‘<€aa+€ 6ﬂ)+ 2 (6aa+6ﬂﬂ)

T P [2(aﬂ)"+1 - (8- 5%)”“ a1 = (a- 6—86)"“ ﬂ"“] bpcan,

where a = (@, 3)T. This equation can be truncated to
first order in x if we assume that

Tr(Ix|Tp) <1 . (2.14)

Hence we obtain the following Fokker-Planck equation
for the positive-P function:

hence R is given by

oo
R=17y)_ x"(a")"*'amt, (2.9)

n=0

under the assumption that every photon that leaves the
cavity is counted.

Using the Srinivas-Davies result for the time depen-
dence of p,

dp _ R

o = AP rg (2.10)
we get the following master equation for a cavity with
feedback:

d oo
Pfb 121 X" [ 2an+1p(a1’)n+1 _ (af)n+1an+1p
0

n=

—p(af)""’lan"‘l]. (2.11)

Note that we are using a cavity driven by a coherent
input at the other mirror. This mirror has a damping
rate 7. We must therefore include driving and damp-
ing terms in the master equation. The complete master
equation is therefore given by

d
%% = [ea’ — €*a,p] + :YQ% (2apa’ — atap — pala) + —%t-ﬂl,
(2.12)

where we assumed that the bath is at zero temperature.
We also note that € is amplitude of the driving field inside
the cavity.

In order to solve Eq. (2.12) we transform it to the
Drummond-Gardiner positive-P representation [5]. We
then obtain the following equation:

(2.13)
[
—-é% (e* - %ﬂ - 71xaﬂ2)
S Z Mg 5’9;—27—;’—‘;32] P(a,t),
(2.15)
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where v = 71 + 72.

This Fokker-Planck equation is identical to that used
by Drummond, Gardiner, and Walls [6] and Collett and
Walls [7] when v = 2 and v1x — 2x. This means that
the system considered here is formally equivalent to the
two-photon-absorption model. The difference lies in the
extra linear damping term ~; which also controls the ef-
fective two-photon-loss rate v;x in Eq. (2.15).

III. LINEARIZED ANALYSIS OF
FLUCTUATIONS

The Fokker-Planck equation derived in the preced-
ing section is equivalent to the Ito stochastic differential
equations given by

da ~
da _ 3.1
- =A+BE, (3.1)
where the drift vector is
€ —Ya—vxa?p
(€ ) 3.2
A (e - 38 — nxes? (3-2)

The matrix B is a postive semidefinite matrix given by

BET = P(a) = (—W’z 0 ) (3.3)

0 -—-mxB?

where D(a) is the diffusion matrix. The vector E =
(E1, E3)T is the noise vector where
(B:(0)E;(t)) = 6i,56(t —t'). (34)

In our case we get the following stochastic equations:

do )
Pk %a - 11xe?B + i/AixeE,
(3.5)
d . .
2 — ¢~ 15— yixas® +iyTXOE:

In the semiclassical steady state these equations have
a steady-state solution given by

€

oy = —mm—————. 3.6
0 % + mix|aol? (3.6)

If we now set i = |ap|? to be the mean steady-state

photon number inside the cavity, we obtain the following
cubic in x7:

2

(D .\ xl
(g +xn) =X

(3.7)

where D = v/41 = 14+42/v1 with v = 41 +2. Note that
the value of D can never go below 1.

In order to find the stability conditions and noise char-
acteristics of the system we linearize these equations
about the deterministic steady state given by Eq. (3.6)
by setting

a(t) = ap + ba(t),
(3.8)

B(t) = ag + 86(¢),
where da and 68 are small, time-dependent fluctuations

about the steady states cp and . We then get the
following equation for the fluctuations:

%(éa) — _Abo+F, (3.9)

where da = (6, 68)T and F = (Fy, F;)T. The noise
terms are given by F; = i\/y1x7 and

i_(3+2nxA mxA
(2
4 ( nxn  F+2vxn)” (3.10)
‘We note that
(F.,,(t)FJ (t’)) = —’leﬁ&i’jﬁ(t - t"). (3.11)

In order for this system of equations to be stable the
real part of the eigenvalues of the matrix A must be
greater than zero. These eigenvalues are

A= % +7x7,
(3.12)

Ag = % + 37 x7.
As both eigenvalues are always positive, the system is
always stable. This is not unreasonable since an increase
in the number of photons inside the cavity leads to an
increased damping rate out of the cavity which reduces
the photon number inside it. Hence the system is always
stable.

A. Noise characteristics of the intracavity
radiation field

In order to find the noise characteristics of the light
inside the cavity we need to calculate the covariance ma-
trix from our fluctuation equations (3.5). This matrix
can be found, by the method of Gardiner [8], to be

oo ( (6a?) (6a6ﬂ))
(60:68) (68%)

_ —Xn D +4xn —2xn
(D +4xn)2 — (2xn)2 \ —2x7 D+4xn )"’

(3.13)

These correlations can be directly related to the expec-
tation values of products of a and at via

(a,a) = (6&2) ’

(a',a) = (6a68,) (3.14)
(a',al) = (68%),
where
(4,B) = (AB) — (A)(B). (3.15)
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Using these we can find the variances in the quadrature
phase observables X; = a +a! and X; = —i(a — a'):

2x7n
V=1 D ey
(3.16)
2xn
VD=1 B

As we can see from Eq. (3.7) any required value of x7
can be obtained independently of D by correctly select-
ing the driving power |e|2. We can therefore set D and
x7i independently in Eq. (3.16). Thus we see that the
maximum squeezing approaches % asD — 1land xin — 1.

B. Photon statistics

The Q factor which measures the deviation from Pois-
son photon statistics is given by

V(ata) — (ata) '

Q(0) = ata) (3.17)
To first order in x# this becomes
Q(0) =~ —2x#. (3.18)

As expected from the results of Sec. III A we observe sub-
Poissonian statistics corresponding to amplitude squeez-
ing.

C. Squeezing spectrum of the output field

In order to calculate the squeezing in the output field
we need to find the spectral matrix for the fluctuations
in the intracavity field. This matrix is defined by [8]

SN (G P-1F(E s fy=1 _ [ S11 512
S(w) = (A+iwl) ' D(A — iwl) —(S21522 ,

(3.19)

where A is the drift matrix given by Eq. S3.10), D is the
diffusion matrix given by Eq. (3.3), and I is the identity
matrix. The normally ordered squeezing spectrum of the
output field is related to the spectral matrix via [7]:

: S (W) 1= vo [£e %081y + €250, + S12 + Sz,
(3.20)
where @ is the relative phase of the quadrature being
measured. If we set § = 0 then : S : is the squeez-
ing in the X; quadrature, or amplitude, and : S°Ut : is

the squeezing in the X, quadrature, or phase. For this
system these are

—2vé
S+(Q) =: S (w) : = ———F——,
" * (2 +38)" + 02

(3.21)
2v6

S_(Q) =: SO (w) : = m,

where Q = w/v1, v = v2/v1 and § = x7i. These spectra
are both Lorentzian with the maximum squeezing given

—2v6 —2(D —1)6 —2%xn
S+(O) = D 3 = D 5 = 2
(z+30)° (3430 (1+2+3xn)
(3.22)
- —22y7
5.(0) = 206  2(D-1)6 _ X .

2 2
G+ B+ (3+mexn)

These equations show that we get a reduction of fluc-
tuations in the X; quadrature outside the cavity and
a corresponding increase in the fluctuations in the X,
quadrature. The optimum squeezing in the X; quadra-
ture occurs at D = 66 + 2 and is given by

—-26  —=2xn
1+66  1+6xAa

SUt(0) = (3.23)
Since x7i must be less than 1, the best obtainable squeez-
ing is —2 when xA — 1 and D — 8, or v2/y1 — 7. This
suggests that the reflectivity of the input-output coupler
at the pump end of the cavity must be much less than
that of the feedback end; in fact, it must be seven times
smaller. It should be noted that the absolute maximum
possible theoretical squeezing is —1 because of our defi-
nitions of X; and X.

Figure 2 shows the dependence of the squeezing outside
the cavity on D = (y1+72)/v1 = 1+72/71 and the scaled
intracavity mean photon number x7.

The best squeezing described here occurs at a value
of x#i close to 1. In Eq. (2.14), however, we assumed
that x7 is small for the purposes of the truncation of
the equation for the positive-P function. Hence the best
squeezing parameter regime is outside the region of va-
lidity of the model.

FIG. 2. The normally ordered maximum squeezing in the
X1 quadrature of the output field as a function of the nor-
malized linear damping D and the scaled intracavity mean
photon number x7.
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IV. CONCLUSION

In this paper we have shown that using a feedback
scheme where the photodetector current outside a driven
cavity is used to modify the damping rate can lead to
squeezing in the field inside and outside the cavity. That
is, it can produce squeezed states. The essential differ-
ence between this scheme and conventional laser with

feedback schemes described in the introduction is the
presence of a strong driving field and no intracavity am-
plification. The light field exiting the cavity through the
same port through which the driving field enters can be
extracted as a source of squeezed light. The cavity can be
thought to be acting as a nonlinear reflector. This non-
linear reflectivity produces the reduced noise properties
on a strong coherent light field.
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