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Quantum-noise reduction in a driven cavity with feedback
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We show that amplitude-squeezed states may be produced by driving a feedback-controlled cav-
ity with a coherent input signal. The feedback controls the transmissivity of one output from the
cavity and is essentially equivalent to nonlinear absorption. The cavity electively acts as a nonlin-
ear reflector. Hence, amplitude-squeezed states with arbitrarily strong coherent intensities can be
obtained.
PACS number(s): 42.50.Dv, 42.50.Ar, 42.50.Lc

I. INTRODUCTION

Feedback has long been used to stabilize the operation
of optical cavities and lasers. Recently Yamamoto and
co-workers [1] demonstrated that feedback could be used
to reduce the intensity fluctuations in the light emitted
by a semiconductor laser. In their experiment, the light
from the laser illuminated a photodetector and the result-
ing photocurrent was fed back to the injection current of
the laser. The in-loop field, that is, the light between the
laser and the photodetector, does exhibit sub-shot-noise
statistics, however, it is difBcult to extract this field to
exploit the reduced noise properties in applications. To
overcome this problem Wiseman and Milburn [3] pro-
posed a model in which the transmissivity of one output
coupler from a laser cavity is controlled by a feedback
circuit similar to that of Yamamoto and co-workers. The
light leaving the cavity through the feedback-controlled
output coupler falls on a photodetector and the result-
ing current used to control the transmissivity at the out-
put. However, unlike the scheme of Yamamoto and co-
workers, this scheme includes another cavity output port
from which a sub-shot-noise light field may be extracted.

In both the laser feedback schemes described above
the light produced has reduced intensity noise but, as is
typical of lasing devices, the noise is phase independent.
Squeezed states are a more general class of states of the
field for which the noise is very phase dependent. Such
states can exhibit either reduced intensity fluctuations or
reduced phase fluctuations. It is the purpose of this paper
to show that the feedback model of Wiseman and Mil-
burn can be used to produce squeezed states. To achieve
this we consider an empty, externally driven feedback-
controlled cavity. The cavity thus becomes a nonlinear
reflector as far as the input light is concerned. The non-
linearity, in fact, appears as nonlinear absorption.

The cavity, of course, may be designed to operate at
whatever the laser input frequency is. This flexibility
is one of the great attractions of producing squeezed
states in this way. One does not need to rely on the
frequency restrictions of a particular nonlinear optical
material. Feedback enables one to engineer the nonlin-
earity at any frequency. The other advantage comes from
the fact that the squeezing is induced on a field which has

a large coherent amplitude. The theoretical description
of the model is based on a model of feedback control of a

travelling wave proposed by Shapiro and co-workers [2],
and the general theory of photodetection from an optical
cavity, given by Srinivas and Davies [4].

II. QUANTUM THEORY OF FEEDBACK-
CONTROLLED CAVITY TRANSMISSIVITY

In Fig. 1 we indicate schematically the feedback sys-
tem. The cavity has two outputs. The transmissivity
of one output is controlled by a current derived from a
photodetector illuminated by the light leaving through
that port. The current controlled beam splitter may be
realized in a number of ways using acousto-optic mod-
ulators and perhaps polarizing filters. A more detailed
discussion of the experimental realization will be given
in a future paper. The other output of the cavity is illu-
minated by a strong coherent field. As we now show, the
input field sees a cavity containing an effective nonlinear
absorber due to the feedback, where the ouput transmis-
sivity is increased with increasing detection rate at the
photodetector. The zero-feedback damping rates at the
input coupler and feedback controlled coupler are p2 and

pq, respectively.
The count rate at the photodetector is determined by a

count superoperator A(t), which depends on the counting
history through

(2.1)

sn

FIG. 1. A schematic representation of the cavity with
feedback model where p.d. denotes the photodetector. The
modes b;„and b „t denote the input and output fields, respec-
tively.
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where hence R is given by

and

AO = pl/ (2.2)
R = ~, ) ~"(at)"+'a"+', (2 9)

(2.3)

is the count superoperator in the absence of the feedback
circuit. The quantity A is a dimensionless parameter
determining the strength of the feedback, and

&
is the

memory parameter . This feedback model was motivated
by a classical Markovian self-exciting point process [3). If
we iterate Eq. (2.1) we find that the count superoperator
defines a stationary count process. The count superop-
erator is given by

under the assumption that every photon that leaves the
cavity is counted.

Using the Srinivas-Davies result for the time depen-
dence of p,

dp R R—=Ap ——p —p-
d t '2 2

(2.10)

we get the following master equation for a cavity with
feedback:

A = piZ). y"Z", (2.4)
OO

fb ) +n 2an+ p(at)n+1 ( t)n+ an+ pd't 2

where

(2.5)

p(at)n+1 n+1 (2.11)

is the feedback parameter. This equation converges pro-
vided

T(IXI&p) & 1. (2 6)

A=&1ZI1+ —A
i

A

& ) (2.7)

The mean count rate is determined by a rate operator
(not a superoperator) R, defined by

= Tr(pR) = Tr(Ap), (2.8)

This is effectively a restriction on the allowed photon
number for physically acceptable solutions. Equation
(2.4) is the series expansion for

Note that we are using a cavity driven by a coherent
input at the other mirror. This mirror has a damping
rate p2. We must therefore include driving and damp-
ing terms in the master equation. The complete master
equation is therefore given by

eat —a*a, p + —(2apat —atap —paia) +dp - e '72 Pfb
dt - - 2 cB

(2.12)

where we assumed that the bath is at zero temperature.
We also note that e is amplitude of the driving field inside
the cavity.

In order to solve Eq. (2.12) we transform it to the
Drummond-Gardiner positive-P representation [5]. We
then obtain the following equation:

M'(n, t) (' 8, 8't pg &8 8

+-", ).X" 2( O)"+' —
~

O—
n+1 n+1

"+' —
~

~ -
~

P"+' P(~ t)n) BPJ
(2.13)

where n = (a, P)+. This equation can be truncated to
first order in y if we assume that

BP(cx, t) 8
Bt Oo. 2

'Y1X~ 0)

T (IXI&p) «1 (2.14)
~* — P vix~P')— —

BP 2

Hence we obtain the following Fokker-Planck equation
for the positive-P function:

'YiX
cto2 2

P2 P(n, t),

(2.15)
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where p = py + pg.
This Fokker-Planck equation is identical to that used

by Drummond, Gardiner, and Walls [6] and Collett and
Walls [7] when p = p2 and pix ~ 2X. This means that
the system considered here is formally equivalent to the
two-photon-absorption model. The difference lies in the
extra linear damping term pi which also controls the ef-
fective two-photon-loss rate»X in Eq. (2.15).

III. LINEARIZED ANALYSIS OF
FLUCTUATIONS

The Fokker-Planck equation derived in the preced-
ing section is equivalent to the Ito stochastic differential
equations given by

(3.1)

n(t) = np + bn(t),

~(t) = np+ b~(t)
(3 8)

—(bn) = —Abn + F,t (3 9)

where bn = (bn, bP) and F = (Fi, Fq) . The noise
terms are given by F~ = ig»xn and

i;+2»x~ »X~
»Xn z +2»xny '

We note that

{3.10)

where bn and 6P are small, time-dependent fluctuations
about the steady states np and np. We then get the
following equation for the Quctuations:

where the drift vector is (F,(t)F, (t')) = —»Xnb, ,b(t t'). — (3.11)
t' e —~n —»Xn'P &

ks* —~a~ —»Xn~ )
' (3.2)

In order for this system of equations to be stable the
real part of the eigenvalues of the matrix A must be
greater than zero. These eigenvalues are

ABBT —D( ) -~ixP') ' (3.3)

The matrix B is a postive semidefinite matrix given by
Ag ———+ Q]gA,=y

2
(3.12)

(E'(t)E (t )) = b', b(t —t ). (3.4)

In our case we get the following stochastic equations:

dA

2
= ~ ——n —»Xn P+ tv'»XnEi,

where D(n) is the diffusion matrix. The vector E =
(Ei, E~) is the noise vector where

A2 ———+ Spgyn.=y
2

As both eigenvalues are always positive, the system is
always stable. This is not unreasonable since an increase
in the number of photons inside the cavity leads to an
increased damping rate out of the cavity which reduces
the photon number inside it. Hence the system is always
stable.

dP
dt 2 P —»XnP + i/»XPE2 ~

(3.5) A. Noise characteristics of the intracavity
radiation field

In the semiclassical steady state these equations have
a steady-state solution given by

In order to find the noise characteristics of the light
inside the cavity we need to calculate the covariance ma-
trix from our fluctuation equations (3.5). This matrix
can be found, by the method of Gardiner [8], to be

~2+»xlnp[' (3.6)

If we now set n = lnp[2 to be the mean steady-state
photon number inside the cavity, we obtain the following
cubic in yn, :

t' (bn~) (bnbP)&
((bnbP) (bPz) )

&D+4xn —2xn )
(D+4X~)~ (2xri)~ i —2xn D+4xnp '

(3.13)

xi~I'
x —+x~l = (3.7)

These correlations can be directly related to the expec-
tation values of products of a and a~ via

where D = p/» = 1+pz/» with p = » +pq. Note that
the value of D can never go below l.

In order to find the stability conditions and noise char-
acteristics of the system we linearize these equations
about the deterministic steady state given by Eq. {3.6)
by setting

(a, a) = (bn ),
(at, a) = (bnbP, )

(a' a') = (b&')

where

(A, B) = (AB) —(A)(B).

(3.14)

(3.15)
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we can find the variances in the quadrature
;(. .t),phase observables Xi ——a+ a an

2XnV(X ) =1 —2~Xn
$1

—2(D —1)b'

( +3b)
s, (o) =

(3.16) (—, +3b)
2)

( + + 3+n2

(3.22)
2xn

V(X2) =1+

i, v = pz/pi and b' = yn. These spectra
'

h maximum squeezing givenare both Lorentzian with t e maxim
by

B. Photon statistics

res the deviation from Pois-The Q factor which measures e
son photon statistics is given by

V(at a) —(at a)
a(0) = (...)

To first order in yn this becomes

q(O) = -2~&.

(3.17)

(3.18)

om the results of Sec. III A we observe sub-
di to plitude s u e—P '

nian statistics correspon ing o aWolssonla
ing.

trum of the output fieldC. Squeezing spectrum o

ate the squeezing in the outpu
~ ~ ut field

at ' fo the fiu tu tio
in

' ' ld. This matrix is defined byin the intracavity field. is m

&Sii Siz'I
( )=( + )

'
( — )

(3.19)

m E . (3.7) any required value of yn(
b 1 1can be obtaineined independently of D y correc

therefore set D and
3.16 . Th th t th
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2vb 2(D —1)b'-"'=(=:) =(=, ") =
2+
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2'

—+ ~+yn
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(3.23)
2b ——2ynS "'(o) =
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1 dD 8, o / 7 Thiing is when yn 1
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' '

y
7
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IV. CONCLUSION

In this paper we have shown that using a feedback
scheme where the photodetector current outside a driven
cavity is used to modify the damping rate can lead to
squeezing in the field inside and outside the cavity. That
is, it can produce squeezed states. The essential differ-
ence between this scheme and conventional laser with

feedback schemes described in the introduction is the
presence of a strong driving field and no intracavity am-
plification. The light field exiting the cavity through the
same port through which the driving field enters can be
extracted as a source of squeezed light. The cavity can be
thought to be acting as a nonlinear reflector. This non-
linear reflectivity produces the reduced noise properties
on a strong coherent light Geld.
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