2,113 research outputs found
Trajectory-Based Dynamic Map Labeling
In this paper we introduce trajectory-based labeling, a new variant of
dynamic map labeling, where a movement trajectory for the map viewport is
given. We define a general labeling model and study the active range
maximization problem in this model. The problem is NP-complete and W[1]-hard.
In the restricted, yet practically relevant case that no more than k labels can
be active at any time, we give polynomial-time algorithms. For the general case
we present a practical ILP formulation with an experimental evaluation as well
as approximation algorithms.Comment: 19 pages, 7 figures, extended version of a paper to appear at ISAAC
201
Recommended from our members
Study of modified area of polymer samples exposed to a he atmospheric pressure plasma jet using different treatment conditions
In the last decade atmospheric pressure plasma jets (APPJs) have been routinely employed for surface processing of polymers due to their capability of generating very reactive chemistry at near-ambient temperature conditions. Usually, the plasma jet modification effect spans over a limited area (typically a few cmÂČ), therefore, for industrial applications, where treatment of large and irregular surfaces is needed, jet and/or sample manipulations are required. More specifically, for treating hollow objects, like pipes and containers, the plasma jet must be introduced inside of them. In this case, a normal jet incidence to treated surface is difficult if not impossible to maintain. In this paper, a plasma jet produced at the end of a long flexible plastic tube was used to treat polyethylene terephthalate (PET) samples with different incidence angles and using different process parameters. Decreasing the angle formed between the plasma plume and the substrate leads to increase in the modified area as detected by surface wettability analysis. The same trend was confirmed by the distribution of reactive oxygen species (ROS), expanding on starch-iodine-agar plates, where a greater area was covered when the APPJ was tilted. Additionally, UV-VUV irradiation profiles obtained from the plasma jet spreading on the surface confirms such behavior
Characterization of a brazilian smectite by solid state NMR and X-ray diffraction techniques
X-ray diffraction (XRD), differential thermal analysis (DTA) and 27Al and 29Si solid state MAS-NMR techniques were used to monitor the fractionation steps of a brazilian smectite, previously crushed, from Campina Grande, ParaĂba. The sand, silt and clay fractions were obtained by physical and chemical treatments. The XRD analysis of sand and silt fractions showed that both fractions had predominant quartz and feldspar, respectively. The XRD results of the K+ saturated and heated clay fraction confirmed that the natural clay belongs to the 2:1 clay-mineral group, whereas the analysis of the Mg2+ saturated and glycolated clay fraction confirmed the presence of a smectite group clay. The MAS-NMR results of 27Al and 29Si showed that the sand fraction contains 79% of quartz and the silt fraction contains 55% of quartz, while the clay fraction is rich in smectite with low isomorphic replacement of Si by Al, and contains 38 % of quartz
Scaling of Island Growth in Pb Overlayers on Cu(001)
The growth and ordering of a Pb layer deposited on Cu(001) at 150 K has been
studied using atom beam scattering. At low coverage, ordered Pb islands with a
large square unit cell and nearly hexagonal internal structure are formed. This
is a high order commensurate phase with 30 atoms in the unit cell. From the
measurement of the island diffraction peak profiles we find a power law for the
mean island - size versus coverage with an exponent . A
scaling behavior of growth is confirmed and a simple model describing island
growth is presented. Due to the high degeneracy of the monolayer phase,
different islands do not diffract coherently. Therefore, when islands merge
they still diffract as separate islands and coalescence effects are thus
negligible. From the result for we conclude that the island density is
approximately a constant in the coverage range where the
ordered islands are observed. We thus conclude that most islands nucleate at
and then grow in an approximately self similar fashion as
increases.Comment: 23 pages, 10 Figures (available upon request). SU-PHYS-93-443-375
Recommended from our members
Efficiency of plasma-processed air for biological decontamination of crop seeds on the premise of unimpaired seed germination
In this study, the antimicrobial effect of plasma-processed air (PPA) generated by a microwave-induced nonthermal plasma was investigated for preharvest utilization using three crop species: Barley, rape, and lupine. Bacillus atrophaeus spores were chosen as a model, inoculated onto seeds, and subsequently treated with PPA at two different flow rates, different filling regimes, and gas exposure times. PPA treatment was efficient in reducing viable spores of B. atrophaeus, reaching sporicidal effects in all species at certain parameter combinations. Maximum germination of seeds was strongly reduced in barley and rape seeds at some parameter combination, whereas it had a modest effect on lupine seeds. Seed hydrophilicity was not altered. Overall, PPA investigated in this study proved suitable for preharvest applications
Design and User Satisfaction of Interactive Maps for Visually Impaired People
Multimodal interactive maps are a solution for presenting spatial information
to visually impaired people. In this paper, we present an interactive
multimodal map prototype that is based on a tactile paper map, a multi-touch
screen and audio output. We first describe the different steps for designing an
interactive map: drawing and printing the tactile paper map, choice of
multi-touch technology, interaction technologies and the software architecture.
Then we describe the method used to assess user satisfaction. We provide data
showing that an interactive map - although based on a unique, elementary,
double tap interaction - has been met with a high level of user satisfaction.
Interestingly, satisfaction is independent of a user's age, previous visual
experience or Braille experience. This prototype will be used as a platform to
design advanced interactions for spatial learning
Variational Monte Carlo study of the ground state properties and vacancy formation energy of solid para-H2 using a shadow wave function
A Shadow Wave Function (SWF) is employed along with Variational Monte Carlo
techniques to describe the ground state properties of solid molecular
para-hydrogen. The study has been extended to densities below the equilibrium
value, to obtain a parameterization of the SWF useful for the description of
inhomogeneous phases. We also present an estimate of the vacancy formation
energy as a function of the density, and discuss the importance of relaxation
effects near the vacant site
- âŠ