53 research outputs found

    Surface critical behavior in fixed dimensions d<4d<4: Nonanalyticity of critical surface enhancement and massive field theory approach

    Full text link
    The critical behavior of semi-infinite systems in fixed dimensions d<4d<4 is investigated theoretically. The appropriate extension of Parisi's massive field theory approach is presented.Two-loop calculations and subsequent Pad\'e-Borel analyses of surface critical exponents of the special and ordinary phase transitions yield estimates in reasonable agreement with recent Monte Carlo results. This includes the crossover exponent Φ(d=3)\Phi (d=3), for which we obtain the values Φ(n=1)0.54\Phi (n=1)\simeq 0.54 and Φ(n=0)0.52\Phi (n=0)\simeq 0.52, considerably lower than the previous ϵ\epsilon-expansion estimates.Comment: Latex with Revtex-Stylefiles, 4 page

    The MIK2/SCOOP Signaling System Contributes to Arabidopsis Resistance Against Herbivory by Modulating Jasmonate and Indole Glucosinolate Biosynthesis.

    Get PDF
    Initiation of plant immune signaling requires recognition of conserved molecular patterns from microbes and herbivores by plasma membrane-localized pattern recognition receptors. Additionally, plants produce and secrete numerous small peptide hormones, termed phytocytokines, which act as secondary danger signals to modulate immunity. In Arabidopsis, the Brassicae-specific SERINE RICH ENDOGENOUS PEPTIDE (SCOOP) family consists of 14 members that are perceived by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR LIKE KINASE 2 (MIK2). Recognition of SCOOP peptides elicits generic early signaling responses but knowledge on how and if SCOOPs modulate specific downstream immune defenses is limited. We report here that depletion of MIK2 or the single PROSCOOP12 precursor results in decreased Arabidopsis resistance against the generalist herbivore Spodoptera littoralis but not the specialist Pieris brassicae. Increased performance of S. littoralis on mik2-1 and proscoop12 is accompanied by a diminished accumulation of jasmonic acid, jasmonate-isoleucine and indolic glucosinolates. Additionally, we show transcriptional activation of the PROSCOOP gene family in response to insect herbivory. Our data therefore indicate that perception of endogenous SCOOP peptides by MIK2 modulates the jasmonate pathway and thereby contributes to enhanced defense against a generalist herbivore

    Additional amphivasal bundles in pedicel pith exacerbate central fruit dominance and induce self-thinning of lateral fruitlets in apple

    Get PDF
    Apple (Malus x domestica) trees naturally produce an excess of fruitlets that negatively affect the commercial value of fruits brought to maturity, and impact their capacity to develop flower buds the following season. Therefore, chemical thinning has become an important cultural practice allowing the selective removal of unwanted fruitlets. As the public pressure to limit the use of chemical agents increases, the control of thinning becomes a major issue. Here, we characterized the self-thinning capacity of an apple hybrid-genotype, from a tree scale to a molecular level. Additional amphivasal vascular bundles were identified in the pith of pedicels supporting the fruitlets with the lowest abscission potential (central fruitlet), indicating that these bundles might have a role in the acquisition of dominance over lateral fruitlets. Sugar content analysis revealed that central fruitlets were better supplied in sorbitol than laterals\u27. Transcriptomic profiles allowed us to identify genes potentially involved in the over-production of vascular tissues in central pedicels. In addition, histological and transcriptomic data permitted a detailed characterization of abscission zone (AZ) development and the identification of key genes involved in this process. Our data confirm the major role of ethylene, auxin, and cell wall remodeling enzymes in AZ formation. The shedding process in this hybrid appears to be triggered by a naturally exacerbated dominance of central fruitlets over lateral ones, brought about by an increased supply of sugars, possibly through additional amphivasal vascular bundles. The characterization of this genotype opens new perspectives for the selection of elite apple cultivars

    On the nature of the finite-temperature transition in QCD

    Full text link
    We discuss the nature of the finite-temperature transition in QCD with N_f massless flavors. Universality arguments show that a continuous (second-order) transition must be related to a 3-D universality class characterized by a complex N_f X N_f matrix order parameter and by the symmetry-breaking pattern [SU(N_f)_L X SU(N_f)_R]/Z(N_f)_V -> SU(N_f)_V/Z(N_f)_V, or [U(N_f)_L X U(N_f)_R]/U(1)_V -> U(N_f)_V/U(1)_V if the U(1)_A symmetry is effectively restored at T_c. The existence of any of these universality classes requires the presence of a stable fixed point in the corresponding 3-D Phi^4 theory with the expected symmetry-breaking pattern. Otherwise, the transition is of first order. In order to search for stable fixed points in these Phi^4 theories, we exploit a 3-D perturbative approach in which physical quantities are expanded in powers of appropriate renormalized quartic couplings. We compute the corresponding Callan-Symanzik beta-functions to six loops. We also determine the large-order behavior to further constrain the analysis. No stable fixed point is found, except for N_f=2, corresponding to the symmetry-breaking pattern [SU(2)_L X SU(2)_R]/Z(2)_V -> SU(2)_V/Z(2)_V equivalent to O(4) -> O(3). Our results confirm and put on a firmer ground earlier analyses performed close to four dimensions, based on first-order calculations in the framework of the epsilon=4-d expansion. These results indicate that the finite-temperature phase transition in QCD is of first order for N_f>2. A continuous transition is allowed only for N_f=2. But, since the theory with symmetry-breaking pattern [U(2)_L X U(2)_R]/U(1)_V -> U(2)_V/U(1)_V does not have stable fixed points, the transition can be continuous only if the effective breaking of the U(1)_A symmetry is sufficiently large.Comment: 30 pages, 3 figs, minor correction

    The SCOOP 12 peptide regulates defense response and root development in Arabidopsis thaliana

    Get PDF
    Small secreted peptides are important players in plant development and stress response. Using a targeted in silico approach, we identified a family of 14 Arabidopsis genes encoding precursors of serine-rich endogenous peptides (PROSCOOP). Transcriptomic analyses revealed that one member of this family, PROSCOOP12, is involved in processes linked to biotic and oxidative stress as well as root growth. Plants defective in this gene were less susceptible to Erwinia amylovora infection and showed an enhanced root growth phenotype. In PROSCOOP12 we identified a conserved motif potentially coding for a small secreted peptide. Exogenous application of synthetic SCOOP12 peptide induces various defense responses in Arabidopsis. Our findings show that SCOOP12 has numerous properties of phytocytokines, activates the phospholipid signaling pathway, regulates reactive oxygen species response, and is perceived in a BAK1 co-receptor-dependent manner

    Critical exponents and equation of state of the three-dimensional Heisenberg universality class

    Full text link
    We improve the theoretical estimates of the critical exponents for the three-dimensional Heisenberg universality class. We find gamma=1.3960(9), nu=0.7112(5), eta=0.0375(5), alpha=-0.1336(15), beta=0.3689(3), and delta=4.783(3). We consider an improved lattice phi^4 Hamiltonian with suppressed leading scaling corrections. Our results are obtained by combining Monte Carlo simulations based on finite-size scaling methods and high-temperature expansions. The critical exponents are computed from high-temperature expansions specialized to the phi^4 improved model. By the same technique we determine the coefficients of the small-magnetization expansion of the equation of state. This expansion is extended analytically by means of approximate parametric representations, obtaining the equation of state in the whole critical region. We also determine a number of universal amplitude ratios.Comment: 40 pages, final version. In publication in Phys. Rev.

    Epidemiology and Antimicrobial Resistance of Streptococcus pneumoniae in France in 2007: Data from the Pneumococcus Surveillance Network

    Get PDF
    Antimicrobial resistance of Streptococcus pneumoniae in France is closely monitored by the pneumococcus surveillance network, founded in 1995, which collects data from regional observatories (Observatoire Régionaux du Pneumocoque [ORP]). In 2007, 23 ORPs analyzed the antibiotic susceptibility of 5,302 isolates of S. pneumoniae recovered in France from cerebrospinal fluid, blood, middle ear fluid, and pleural fluid, as well as from adult respiratory samples. The study showed that 38.2% of the strains were nonsusceptible to penicillin, 19.3% nonsusceptible to amoxicillin, and 10.5% nonsusceptible to cefotaxime. The percentage of pneumococcus nonsusceptible to penicillin varied according to both the sample and the age of the patient (child/adult): blood (27.8%/32.5%), cerebrospinal fluid (33.7%/34.6%), middle ear fluid (60.2%/27.5%), and pleural fluid (50.0%/31.0%). Between 2003 and 2007, the frequency of penicillin resistance in invasive pneumococcal disease gradually decreased from 46.4% to 29.0% in children and from 43.8% to 32.7% in adults. This decrease coincided with the introduction of a seven-valent pneumococcal conjugate vaccine into immunization programs and with a general reduction in levels of antibiotic consumption in France
    corecore