567 research outputs found

    Measurement of interface pressure in interference fits

    Get PDF
    When components such as bearings or gears are pressed onto a shaft, the resulting interference induces a pressure at the interface. The size of this pressure is important as many components fail because fatigue initiates from press-fit stress concentrations. The aim of the present work was to develop ultrasound as a tool for non-destructive determination of press-fit contact pressures. An interference fit interface behaves like a spring. If the pressure is high, there are few air gaps, so it is very stiff and allows transmission of an ultrasonic wave. If the pressure is low, then interface stiffness is lower and most ultrasound is reflected. A spring model was used to determine maps of contact stiffness from interference-fit ultrasonic reflection data. A calibration procedure was then used to determine the pressure. The interface contact pressure has been determined for a number of different press- and shrink-fit cases. The results show a central region of approximately uniform pressure with edge stress at the contact sides. The magnitude of the pressure in the central region agrees well with the elastic Lamé analysis. In the more severe press-fit cases, the surfaces scuffed which led to anomalies in the reflected ultrasound. These anomalies were associated with regions of surface damage at the interface. The average contact pressure in a shrink-fit and press-fit joint were similar. However, in the shrink-fit joint more uneven contact pressure was observed with regions of poor conformity. This could be because the action of pressing on a sleeve plastically smooths out long wavelength roughness, leading to a more conforming surface

    An ultrasonic approach for contact stress mapping in machine joints and concentrated contacts

    Get PDF
    The measurement of pressure at a contact in a machine part is important because contact stresses frequently lead to failure by seizure, wear or fatigue. While the interface might appear smooth on a macroscale, it consists of regions of asperity contact and air gaps on a microscale. The reflection of an ultrasonic pulse at such a rough contact can be used to give information about the contact conditions. The more conformal the contact, the smaller is the proportion of an incident wave amplitude that will be reflected. In this paper, this phenomenon has been used to produce maps of contact pressure at machine element interfaces. An ultrasonic pulse is generated and reflected at the interface, to be received by the same piezoelectric transducer. The transducer is scanned across the interface and a map of reflected ultrasound (a c-scan) is recorded. The proportion of the wave reflected can be used to determine the stiffness of the interface. Stiffness correlates qualitatively with contact pressure, but unfortunately there is no unique relationship. In this work, two approaches have been used to obtain contact pressure: firstly by using an independent calibration experiment, and secondly by using experimental observations that stiffness and pressure are linearly related. The approach has been used in three example cases: a series of press fitted joints, a wheel/rail contact and a bolted joint

    A Novel Image Segmentation Approach for Microstructure Modelling

    Get PDF
    Microstructure models are used to investigate bulk properties of a material given images of it’s microstructure. Through their use the effect of microstructural features can be investigated independently. Processes can then be optimised to give the desired selection of microstructural features. Currently automatic methods of segmenting SEM images either miss cracks leading to large overestimates of properties such as thermal conductivity or use unjustifiable methods to select a threshold point which class cracks as porosity leading to over estimates of porosity. In this work a novel automatic image segmentation method is presented which produces maps for each phase in the microstructure and an additional phase of cracks. The selection of threshold points is based on the assumption that the brightness values for each phase should be normally distributed. Additional image processing is used to ensure results remain physically relevant. The image segmentation method has been compared to other available methods and shown to be as or more repeatable with changes of brightness and contrast of the input image than relevant alternatives. The resulting modelling route is able to predict density and specific heat to within experimental error, while the expected under predictions for thermal conductivity are observed

    Experimental characterization of wheel-rail contact patch evolution

    Get PDF
    The contact area and pressure distribution in a wheel/rail contact is essential information required in any fatigue or wear calculations to determine design life, re-grinding, and maintenance schedules. As wheel or rail wear or surface damage takes place the contact patch size and shape will change. This leads to a redistribution of the contact stresses. The aim of this work was to use ultrasound to nondestructively quantify the stress distribution in new, worn, and damaged wheel-rail contacts. The response of a wheel/rail interface to an ultrasonic wave can be modeled as a spring. If the contact pressure is high the interface is very stiff, with few air gaps, and allows the transmission of an ultrasonic sound wave. If the pressure is low, interfacial stiffness is lower and almost all the ultrasound is reflected. A quasistatic spring model was used to determine maps of contact stiffness from wheel/rail ultrasonic reflection data. Pressure was then determined using a parallel calibration experiment. Three different contacts were investigated; those resulting from unused, worn, and sand damaged wheel and rail specimens. Measured contact pressure distributions are compared to those determined using elastic analytical and numerical elastic-plastic solutions. Unused as-machined contact surfaces had similar contact areas to predicted elastic Hertzian solutions. However, within the contact patch, the numerical models better reproduced the stress distribution, as they incorporated real surface roughness effects. The worn surfaces were smoother and more conformal, resulting in a larger contact patch and lower contact stress. Sand damaged surfaces were extremely rough and resulted in highly fragmented contact regions and high local contact stress. Copyright © 2006 by ASME

    The influence of material properties on the wear of abradable materials

    Get PDF
    In aero-engines it is possible for the blades of the compressor, turbine or fan to incur into their casings. At these interfaces a lining of composite abradable material is used to limit damage to components and thereby sustain the efficiency and longevity of the engine as a whole. These composite materials must have good abradability and erosion resistance. Previously, the wear mechanisms at the contact between the blade and the coating have been characterised using stroboscopic imaging and force measurement on a scaled test-rig platform. This work is focused on the characterisation of the wear mechanism for two different hardnesses of abradable lining. The established stroboscopic imaging technique and contact force measurements are combined with sectioning of the abradable material in order to analyse the material’s response during the tests. A measure of the thermal properties and the resulting temperature of the linings during the test have also been made to further understand the effect of coating hardness. The wear mechanism, material response, contact force and thermal properties of the coating have been used to characterise the different material behaviour with different hardness. At low incursion rates, with a soft coating, the blade tip becomes worn after an initial adhesive transfer from the coating. Post-test sectioning showed blade material and significant compaction present in the coating. The harder coating produced adhesion on the blade tip with solidification observed in the coating. Thermal diffusivity measurements and modelling indicated that thermally driven wear observed was as a consequence of the increased number of boundaries between the metal and hBN phases present interrupting heat flow, leading to a concentration of surface heat. At higher incursion rates, the wear mechanism is more similar between the coatings and a cutting mechanism dominates producing negligible adhesion and blade wear

    Experimental modelling of lipping in insulated rail joints and investigation of rail head material improvements

    Get PDF
    An insulated rail joint is a component used to join two abutting rails whilst keeping them electrically separated from one another. This allows for the construction of track circuits and train detection within signalling systems. Electrical failure of the joints can be caused by plastic flow of the rail steel over the insulating gap, known as lipping. In the following paper this failure mode has been experimentally modelled using twin disc testing and indicative conclusions have been formed. It has been found in this testing that endpost thickness does not have an effect on the rate of lipping, but the endpost and rail material do. An endpost with higher compressive strength will perform better while tougher / harder rail steel will also improve performance. The application of a laser clad layer of tougher material on the running surface, however, gave the greatest resistance to lipping

    Determinantes del Precio del Vino en el Mercado Chileno: Un Estudio de Precios Hedónicos.

    Get PDF
    Published by Asociación de Economistas Agrarios de ChileConsumer/Household Economics, Production Economics,

    Investigating the Application of a Honeycomb Abradable Lining in the Turbine Stage of an Aero-Engine

    Get PDF
    Modern aero-engines use abradable linings to reduce axial gas leakage. In this study the wear performance of a new developed nickel superalloy honeycomb abradableliningwas investigated on a novel high-speed test rig, using in-situ measurement techniques, combined with post-test microscopy and X-ray fluorescence based elemental analysis. In particular the effect of changing the nickel-aluminide filler ratio was considered, as well as the impact of thermal ageing of the specimens. Compaction of abradable occurs, resulting in fin wear, along with high forces and temperatures. This wear mechanism is cyclic with debris ejection and sparks. Ageing of the abradable generally leads to an increase in fin wear, with the exception that in one case this lead to improved fracture of the abradable and an improved cutting performance by the fin

    An ultrasonic method for measuring fluid penetration rate into threaded contacts

    Get PDF
    Various methods have been employed to study the efficacy of multipurpose penetrating oils but these techniques do not investigate the rate which these oils penetrate surfaces. This paper outlines a novel, non-invasive ultrasonic method that provides a direct means of mapping fluid penetration in threaded systems. An apparatus with piezoelectric elements was developed to pulse ultrasonic waves into a nut specimen where the waves reflected from the threaded interface. The reflected signal amplitude shifted as fluid penetrated the thread, allowing the fluid to be mapped to provide a measure of ingress rate. The results for three fluid samples are presented. Measurements suggest the fluid tracks helically down the unloaded side of the thread and radially into the loaded thread surfaces

    Characterising pressure and bruising in apple fruit

    Get PDF
    A large percentage of apples are wasted each year due to damage such as bruising. The apple journey from orchard to supermarket is very complex and apples are subjected to a variety of static and dynamic loads that could result in this damage occurring. The aim of this work was to use a novel ultrasonic technique to study apple contact areas and stresses under static loading that may occur, for example, in bulk storage bins used during harvesting. These results were used to identify load thresholds above which unacceptable damage occurs. They were also used to validate output from a finite element model, which will ultimately be developed into a packaging design tool to help reduce the likelihood of apple damage occurring
    corecore