17 research outputs found

    Recent advances in the detection of repeat expansions with short-read next-generation sequencing

    Get PDF
    Short tandem repeats (STRs), also known as microsatellites, are commonly defined as consisting of tandemly repeated nucleotide motifs of 2-6 base pairs in length. STRs appear throughout the human genome, and about 239,000 are documented in the Simple Repeats Track available from the UCSC (University of California, Santa Cruz) genome browser. STRs vary in size, producing highly polymorphic markers commonly used as genetic markers. A small fraction of STRs (about 30 loci) have been associated with human disease whereby one or both alleles exceed an STR-specific threshold in size, leading to disease. Detection of repeat expansions is currently performed with polymerase chain reaction-based assays or with Southern blots for large expansions. The tests are expensive and time-consuming and are not always conclusive, leading to lengthy diagnostic journeys for patients, potentially including missed diagnoses. The advent of whole exome and whole genome sequencing has identified the genetic cause of many genetic disorders; however, analysis pipelines are focused primarily on the detection of short nucleotide variations and short insertions and deletions (indels). Until recently, repeat expansions, with the exception of the smallest expansion (SCA6), were not detectable in next-generation short-read sequencing datasets and would have been ignored in most analyses. In the last two years, four analysis methods with accompanying software (ExpansionHunter, exSTRa, STRetch, and TREDPARSE) have been released. Although a comprehensive comparative analysis of the performance of these methods across all known repeat expansions is still lacking, it is clear that these methods are a valuable addition to any existing analysis pipeline. Here, we detail how to assess short-read data for evidence of expansions, reviewing all four methods and outlining their strengths and weaknesses. Implementation of these methods should lead to increased diagnostic yield of repeat expansion disorders for known STR loci and has the potential to detect novel repeat expansions

    Auditory perception in individuals with Friedreich’s Ataxia

    Get PDF
    INTRODUCTION: Friedreich's ataxia (FRDA) is an inherited ataxia with a range of progressive features including axonal degeneration of sensory nerves. The aim of this study was to investigate auditory perception in affected individuals. METHODS: Fourteen subjects with genetically defined FRDA participated. Two control groups, one consisting of healthy, normally hearing individuals and another comprised of subjects with sensorineural hearing loss, were also assessed. Auditory processing was evaluated using structured tasks designed to reveal the listeners' ability to perceive temporal and spectral cues. Findings were then correlated with open-set speech understanding. RESULTS: Nine of 14 individuals with FRDA showed evidence of auditory processing disorder. Gap and amplitude modulation detection levels in these subjects were significantly elevated, indicating impaired encoding of rapid signal changes. Electrophysiologic findings (auditory brainstem response, ABR) also reflected disrupted neural activity. Speech understanding was significantly affected in these listeners and the degree of disruption was related to temporal processing ability. Speech analyses indicated that timing cues (notably consonant voice onset time and vowel duration) were most affected. CONCLUSION: The results suggest that auditory pathway abnormality is a relatively common consequence of FRDA. Regular auditory evaluation should therefore be part of the management regime for all affected individuals. This assessment should include both ABR testing, which can provide insights into the degree to which auditory neural activity is disrupted, and some functional measure of hearing capacity such as speech perception assessment, which can quantify the disorder and provide a basis for interventio

    Heterozygous mutations in HSD17B4 cause juvenile peroxisomal D-bifunctional protein deficiency

    Get PDF
    Objective: To determine the genetic cause of slowly progressive cerebellar ataxia, sensorineural deafness, and hypergonadotropic hypogonadism in 5 patients from 3 different families. Methods: The patients comprised 2 sib pairs and 1 sporadic patient. Clinical assessment included history, physical examination, and brain MRI. Linkage analysis was performed separately on the 2 sets of sib pairs using single nucleotide polymorphism microarrays, followed by analysis of the intersection of the regions. Exome sequencing was performed on 1 affected patient with variant filtering and prioritization undertaken using these intersected regions. Results: Using a combination of sequencing technologies, we identified compound heterozygous mutations in HSD17B4 in all 5 affected patients. In all 3 families, peroxisomal D-bifunctional protein (DBP) deficiency was caused by compound heterozygosity for 1 nonsense/deletion mutation and 1 missense mutation. Conclusions: We describe 5 patients with juvenile DBP deficiency from 3 different families, bringing the total number of reported patients to 14, from 8 families. This report broadens and consolidates the phenotype associated with juvenile DBP deficiency

    Complete callosal agenesis, pontocerebellar hypoplasia, and axonal neuropathy due to AMPD2 loss

    Get PDF
    Objective: To determine the molecular basis of a severe neurologic disorder in a large consanguineous family with complete agenesis of the corpus callosum (ACC), pontocerebellar hypoplasia (PCH), and peripheral axonal neuropathy. Methods: Assessment included clinical evaluation, neuroimaging, and nerve conduction studies (NCSs). Linkage analysis used genotypes from 7 family members, and the exome of 3 affected siblings was sequenced. Molecular analyses used Sanger sequencing to perform segregation studies and cohort analysis and Western blot of patient-derived cells. Results: Affected family members presented with postnatal microcephaly and profound developmental delay, with early death in 3. Neuroimaging, including a fetal MRI at 30 weeks, showed complete ACC and PCH. Clinical evaluation showed areflexia, and NCSs revealed a severe axonal neuropathy in the 2 individuals available for electrophysiologic study. A novel homozygous stopgain mutation in adenosine monophosphate deaminase 2 (AMPD2) was identified within the linkage region on chromosome 1. Molecular analyses confirmed that the mutation segregated with disease and resulted in the loss of AMPD2. Subsequent screening of a cohort of 42 unrelated individuals with related imaging phenotypes did not reveal additional AMPD2 mutations. Conclusions: We describe a family with a novel stopgain mutation in AMPD2. We expand the phenotype recently described as PCH type 9 to include progressive postnatal microcephaly, complete ACC, and peripheral axonal neuropathy. Screening of additional individuals with related imaging phenotypes failed to identify mutations in AMPD2, suggesting that AMPD2 mutations are not a common cause of combined callosal and pontocerebellar defects

    Familial cortical dysplasia type IIA caused by a germline mutation in DEPDC5

    Get PDF
    Whole-exome sequencing of two brothers with drug-resistant, early-onset, focal epilepsy secondary to extensive type IIA focal cortical dysplasia identified a paternally inherited, nonsense variant of DEPDC5 (c.C1663T, p.Arg555*). This variant has previously been reported to cause familial focal epilepsy with variable foci in patients with normal brain imaging. Immunostaining of resected brain tissue from both brothers demonstrated mammalian target of rapamycin (mTOR) activation. This report shows the histopathological features of cortical dysplasia associated with a DEPDC5 mutation, confirms mTOR dysregulation in the malformed tissue and expands the spectrum of neurological manifestations of DEPDC5 mutations to include severe phenotypes with large areas of cortical malformation.Thomas Scerri, Jessica R. Riseley, Greta Gillies, Kate Pope, Rosemary Burgess, Simone A. Mandelstam ... et al

    Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism

    Get PDF
    ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder.Neurolog

    Germ cell arrest associated with aSETX mutation in ataxia oculomotor apraxia type 2

    No full text
    Ataxia with oculomotor apraxia type 2 (AOA2) is a rare autosomal recessive neurodegenerative disorder characterized by cerebellar atrophy, peripheral neuropathy and oculomotor apraxia. It is caused by mutations in the SETX gene that encodes senataxin, a ubiquitously expressed protein that mediates processes, including transcription, transcription termination, DNA repair, RNA processing, DNA-RNA hybrid (R-loop) elimination and telomere stability. In mice, senataxin is essential for male germ cell development and fertility through its role in meiotic recombination and sex chromosome inactivation. AOA2 is associated with hypogonadism in women, but there are no reports of hypogonadism or infertility in men. We describe the first case of human male infertility caused by germ cell arrest in a man with AOA2. Our patient has a homozygous mutation in the SETX gene (NC_000009.11:g.135158775dup), which results in a frameshift and premature protein termination (NM_015046.6:c.6422dup, p.[Ser2142Glufs*23]). In accordance with the murine phenotype, testis histology revealed disrupted seminiferous tubules with spermatogonia and primary spermatocytes, but absent spermatids. Collectively, these data support an essential role of senataxin in human spermatogenesis, and provide a compelling case that men with AOA2 should be counselled at diagnosis about the possibility of infertility.SR Catford, MK O'Bryan, RI McLachlan, MB Delatycki, L Rombaut

    Mutant torsinA interacts with tyrosine hydroxylase in cultured cells

    Full text link
    Business firms, including miners and mining companies, seek to preventloss in various ways. When their assets are real property, a mortgage mayprovide collateral or other security for their activities. As security for a debt, a mortgage is only an effective remedy when it enables the creditor, such as a bank or other lender, to declare a default, seize the title in a foreclosure action, and then use the property to satisfy the mortgagedebt. The Latin word for security was securitas, translated as sponsor. The ideaof a mortgage lien or a security is that the property itself sponsors therepayment of the debt incurred in a mortgage loan

    Detecting expansions of tandem repeats in cohorts sequenced with short-read sequencing data

    No full text
    Repeat expansions cause more than 30 inherited disorders, predominantly neurogenetic. These can present with overlapping clinical phenotypes, making molecular diagnosis challenging. Single-gene or small-panel PCR-based methods can help to identify the precise genetic cause, but they can be slow and costly and often yield no result. Researchers are increasingly performing genomic analysis via whole-exome and whole-genome sequencing (WES and WGS) to diagnose genetic disorders. However, until recently, analysis protocols could not identify repeat expansions in these datasets. We developed exSTRa (expanded short tandem repeat algorithm), a method that uses either WES or WGS to identify repeat expansions. Performance of exSTRa was assessed in a simulation study. In addition, four retrospective cohorts of individuals with eleven different known repeat-expansion disorders were analyzed with exSTRa. We assessed results by comparing the findings to known disease status. Performance was also compared to three other analysis methods (ExpansionHunter, STRetch, and TREDPARSE), which were developed specifically for WGS data. Expansions in the assessed STR loci were successfully identified in WES and WGS datasets by all four methods with high specificity and sensitivity. Overall, exSTRa demonstrated more robust and superior performance for WES data than did the other three methods. We demonstrate that exSTRa can be effectively utilized as a screening tool for detecting repeat expansions in WES and WGS data, although the best performance would be produced by consensus calling, wherein at least two out of the four currently available screening methods call an expansion

    Consensus clinical management guidelines for Friedreich ataxia

    No full text
    Friedreich ataxia (FRDA), a multisystem autosomal recessive condition, is the most common inherited ataxia in Caucasians, affecting approximately 1 in 29,000 individuals. The hallmark clinical features of FRDA include progressive afferent and cerebellar ataxia, dysarthria, impaired vibration sense and proprioception, absent tendon reflexes in lower limbs, pyramidal weakness, scoliosis, foot deformity and cardiomyopathy. Despite significant progress in the search for disease modifying agents, the chronic progressive nature of FRDA continues to have a profound impact on the health and well-being of people with FRDA. At present there is no proven treatment that can slow the progression or eventual outcome of this life-shortening condition. Thirty-nine expert clinicians located in Europe, Australia, Canada and USA critically appraised the published evidence related to FRDA clinical care and provided this evidence in a concise manner. Where no published data specific to FRDA existed, recommendations were based on data related to similar conditions and/or expert consensus. There were 146 recommendations developed to ensure best practice in the delivery of health services to people with FRDA. Sixty-two percent of recommendations are based on expert opinion or good practice indicating the paucity of high-level quality clinical studies in this area. Whilst the development of these guidelines provides a critical first step in the provision of appropriate clinical care for people with FRDA, it also highlights the urgency of undertaking high-quality clinical studies that will ensure the delivery of optimum clinical management and intervention for people with FRDA.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore