9 research outputs found

    Targeted delivery of antisense oligonucleotides by molecular conjugates

    Full text link
    Antisense oligonucleotides efficiently inhibit gene expression in vitro; however, the successful therapeutic application of this technology in vivo will require the development of improved delivery systems. In this report we describe a technique that efficiently delivers antisense oligonucleotides into cells using molecular conjugates. This technique, which was initially developed for the delivery of eukaryotic genes, is based on the construction of DNA-protein complexes that are recognized by the liver-specific asialoglycoprotein receptor. Binding of poly( l -lysine)-asialoorosomucoid (AsOR) protein conjugates with phosphorothioate antisense oligonucleotides to chloramphenicol acetyltransferase (CAT) led to the formation of 50- to 150-nm toroids. Exposure of the antisense molecular complexes (3 µM oligonucleotide) to NIH 3T3 cells genetically modified to express both the AsOR receptor and CAT, inhibited CAT expression by 54%, which was completely blocked by excess AsOR. Equivalent inhibition of CAT activity with purified oligonucleotide alone was observed at a 30 µM concentration. Furthermore, examination of the cells using indirect immunofluorescence for the presence of CAT protein showed 28% of cells exposed to the molecular conjugates lacked any detectable CAT enzyme. Cells exposed to oligonucleotide alone showed a highly variable staining pattern, and only a few of the cells were completely void of CAT protein. Together these data demonstrate that molecular conjugates provide a highly specific and efficient system for the delivery of antisense oligonucleotides.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45543/1/11188_2005_Article_BF01232652.pd

    Airframe Noise Reduction Technologies applied to High-Lift Devices of Future Green Regional Aircraft

    No full text
    Regional aircraft typically operate over airports located in the neighbourhood of densely populated areas, with high frequency of take-off / landing events and, hence, they strongly contribute to community noise and gaseous emissions. These issues currently limit further growth of traffic operated by regional airliners which, in the next future, will have to face even more stringent environmental constraints worldwide as prescribed by the civil aviation certification normative and local regulations as well.Therefore, in accordance with ACARE Vision 2020 toward a drastic reduction of air transport environmental impact over next decades, several mainstream technologies have been considered in the frame of Clean Sky JTI – Green Regional Aircraft (GRA) ITD project for application to next-generation regional aircraft. Such technologies are concerning: i) advanced aerodynamics and load control to maximise lift-to-drag ratio in both design and off-design conditions of the whole flight mission profile, thus reducing fuel consumption/ air pollutants emission and also allowing for steeper/ noise-abatement initial climb paths; ii) load alleviation to avoid loads from gust encounter and manoeuvre exceeding given limits, thus optimising the wing structural design for weight saving; iii) low airframe noise to reduce aircraft acoustic impact in approach flight condition.High-Lift-Devices (HLD) in fully-deployed settings represents one of the main sources of aircraft community noise during the approach flight phase and of consequent annoyance perceived by the resident population in the vicinity of airports. Therefore, in the overall scenario as above outlined, several HLD architectures, integrating either matured or more advanced low-noise concepts/technical solutions still preserving high-lift performances, have been investigated in the frame of the GRA ITD project. These HLD have been tailored to different classes/ configurations of future regional aircraft, ranging from high-wing 90-seat Turboprop to low-wing 130-seat Turbofan with different power-plant and engine installation.Technological studies of High-Lift Low-Noise devices carried out in the framework of the GRA ITD project have been presented. Both computational analyses and wind tunnel tests have been described in detail.Some passive acoustic devices have been firstly analysed with different numerical approaches. First of all, the use of conventional liners, as acoustic treatments carefully integrated with the wing, have revealed to be effective in noise detection for a wide range of frequencies. Also side-edge fences have demonstrated a promising aptitude in suppression of the turbulent vortex occurring around the flap side-edge. These encouraging results have been also confirmed during an extensive WT test campaign.Finally, multi-objective optimizations and the numerical assessment of several configurations have been performed by applying both aerodynamic and aeroacoustic methodologies. These studies have showed the successfully design of high-lift technologies with a low noise impact.The most promising among the addressed HLD technologies will be brought to the final demonstration phase within the GRA ITD work programme, in order to assess in a realistic experimental environment (TRL 5) the aircraft low-speed aerodynamic and aero-acoustic performances through WT tests on large-scale (say 1:6) complete A/C powered models

    Landing gear noise reduction technology development for future green regional aircraft

    No full text
    One of the main objectives of the CS-JTI GRA ITD project - Low Noise Configuration domain is the aircraft noise reduction. It is well known that landing gear is one of main sources of airframe noise and therefore several previous projects have been carried out in USA and Europe to investigate relevant low-noise technologies.Nevertheless these studies have addressed mainly wing-mounted main landing gear (MLG) architecture of low-wing large aircraft which is quite different from the fuselage-mounted MLG of high-wing aircraft. Therefore, an activity plan has been defined to address noise reduction of MLG, and of nose landing gear (NLG) as well, for high-wing turboprop regional aircraft, aimed at identifying TRL 3 technologies and increase their maturity level up to TRL 5.The plan includes both numerical and experimental activities with the participation of European industries, research centers, SMEs and universities, as either GRA ITD Members or Partners of projects in the frame of Calls for Proposals (CfP).In 2012 MLG and NLG baseline configurations, being realistic CAD models of actual architectures, have been jointly delivered by Alenia Aermacchi and Messier-Bugatti-Dowty. In the course of 2013 low-noise technologies development is performed, from state-of-art survey and preliminary studies based on semi-empirical approach, to CFD/CAA analyses and basic wind tunnel tests on simplified mock-ups. Technologies under investigation are fairings, wheels hub caps, bay and doors acoustic treatments, partial closure of bay cavity (after gear lowering), spoilers, vortex disintegrators, etc.The paper describes to-date results and the criteria adopted to down-select landing gear low noise devices leading to the choice of best solutions for WT test demonstrations

    OBI-3424, a novel AKR1c3-activated prodrug, exhibits potent efficacy against preclinical models of T-ALL

    No full text
    PURPOSE:OBI-3424 is a highly selective prodrug that is converted by aldo-keto reductase family 1 member C3 (AKR1C3) to a potent DNA-alkylating agent. OBI-3424 has entered clinical testing for hepatocellular carcinoma and castrate-resistant prostate cancer, and it represents a potentially novel treatment for acute lymphoblastic leukemia (ALL). EXPERIMENTAL DESIGN:We assessed AKR1C3 expression by RNA-Seq and immunoblotting, and evaluated the in vitro cytotoxicity of OBI-3424. We investigated the pharmacokinetics of OBI-3424 in mice and nonhuman primates, and assessed the in vivo efficacy of OBI-3424 against a large panel of patient-derived xenografts (PDX). RESULTS:AKR1C3 mRNA expression was significantly higher in primary T-lineage ALL (T-ALL; n = 264) than B-lineage ALL (B-ALL; n = 1,740; P < 0.0001), and OBI-3424 exerted potent cytotoxicity against T-ALL cell lines and PDXs. In vivo, OBI-3424 significantly prolonged the event-free survival (EFS) of nine of nine ALL PDXs by 17.1-77.8 days (treated/control values 2.5-14.0), and disease regression was observed in eight of nine PDXs. A significant reduction (P < 0.0001) in bone marrow infiltration at day 28 was observed in four of six evaluable T-ALL PDXs. The importance of AKR1C3 in the in vivo response to OBI-3424 was verified using a B-ALL PDX that had been lentivirally transduced to stably overexpress AKR1C3. OBI-3424 combined with nelarabine resulted in prolongation of mouse EFS compared with each single agent alone in two T-ALL PDXs. CONCLUSIONS:OBI-3424 exerted profound in vivo efficacy against T-ALL PDXs derived predominantly from aggressive and fatal disease, and therefore may represent a novel treatment for aggressive and chemoresistant T-ALL in an AKR1C3 biomarker-driven clinical trial.Kathryn Evans, JianXin Duan, Tara Pritchard, Connor D. Jones, Lisa McDermott ... Charles G. Mullighan ... et al

    Gonococcal Lipooligosaccharide is a ligand for the asialoglycoprotein receptor in human sperm

    No full text
    In the present study, we show that Neisseria gonorrhoeae lipooligosaccharide (LOS) can bind to the asialoglycoprotein receptor (ASGP-R) on human sperm. This work demonstrates the presence of ASGP-R on human sperm. Binding of purified ASGP-R ligand decreased in the presence of gonococci. Binding of purified iodinated gonococcal LOS identified a protein of molecular weight corresponding to that of human ASGP-R. The presence of excess unlabelled LOS blocked binding of iodinated gonococcal LOS. Binding of wild-type gonococcal LOS to sperm was higher than that of mutant LOS lacking the galactose ligand for ASGP-R. These data suggest that the ASGP-R on human sperm cells recognizes and binds wild-type gonococcal LOS. This interaction may contribute to the transmission of gonorrhea from infected males to their sexual partners

    Postprandial Hypertriglyceridaemia Revisited in the Era of Non-Fasting Lipid Profile Testing: A 2019 Expert Panel Statement, Narrative Review

    No full text
    corecore