29 research outputs found
Cantor and band spectra for periodic quantum graphs with magnetic fields
We provide an exhaustive spectral analysis of the two-dimensional periodic
square graph lattice with a magnetic field. We show that the spectrum consists
of the Dirichlet eigenvalues of the edges and of the preimage of the spectrum
of a certain discrete operator under the discriminant (Lyapunov function) of a
suitable Kronig-Penney Hamiltonian. In particular, between any two Dirichlet
eigenvalues the spectrum is a Cantor set for an irrational flux, and is
absolutely continuous and has a band structure for a rational flux. The
Dirichlet eigenvalues can be isolated or embedded, subject to the choice of
parameters. Conditions for both possibilities are given. We show that
generically there are infinitely many gaps in the spectrum, and the
Bethe-Sommerfeld conjecture fails in this case.Comment: Misprints correcte
Thin accretion disc with a corona in a central magnetic field
We study the steady-state structure of an accretion disc with a corona
surrounding a central, rotating, magnetized star. We assume that the
magneto-rotational instability is the dominant mechanism of angular momentum
transport inside the disc and is responsible for producing magnetic tubes above
the disc. In our model, a fraction of the dissipated energy inside the disc is
transported to the corona via these magnetic tubes. This energy exchange from
the disc to the corona which depends on the disc physical properties is
modified because of the magnetic interaction between the stellar magnetic field
and the accretion disc. According to our fully analytical solutions for such a
system, the existence of a corona not only increases the surface density but
reduces the temperature of the accretion disc. Also, the presence of a corona
enhances the ratio of gas pressure to the total pressure. Our solutions show
that when the strength of the magnetic field of the central neutron star is
large or the star is rotating fast enough, profiles of the physical variables
of the disc significantly modify due to the existence of a corona.Comment: Accepted for publication in Astrophysics & Space Scienc
SPIDER: Probing the Early Universe with a Suborbital Polarimeter
We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a
divergence-free polarization pattern ("B-modes") in the Cosmic Microwave
Background (CMB). In the inflationary scenario, the amplitude of this signal is
proportional to that of the primordial scalar perturbations through the
tensor-to-scalar ratio r. We show that the expected level of systematic error
in the SPIDER instrument is significantly below the amplitude of an interesting
cosmological signal with r=0.03. We present a scanning strategy that enables us
to minimize uncertainty in the reconstruction of the Stokes parameters used to
characterize the CMB, while accessing a relatively wide range of angular
scales. Evaluating the amplitude of the polarized Galactic emission in the
SPIDER field, we conclude that the polarized emission from interstellar dust is
as bright or brighter than the cosmological signal at all SPIDER frequencies
(90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the
"Southern Hole." We show that two ~20-day flights of the SPIDER instrument can
constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when
foreground contamination is taken into account. In the absence of foregrounds,
the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight
schedule updated, two typos fixed in Table 2, references and minor
clarifications added, results unchange
Recommended from our members
Designing a database for performance assessment: Lessons learned from WIPP
The Waste Isolation Pilot Plant (WIPP) Compliance Certification Application (CCA) Performance Assessment (PA) used a relational database that was originally designed only to supply the input parameters required for implementation of the PA codes. Reviewers used the database as a point of entry to audit quality assurance measures for control, traceability, and retrievability of input information used for analysis, and output/work products. During these audits it became apparent that modifications to the architecture and scope of the database would benefit the EPA regulator and other stakeholders when reviewing the recertification application. This paper contains a discussion of the WPP PA CCA database and lessons learned for designing a database
Soft sensors with white- and black-box approaches for a wastewater treatment process
The increasing degradation of water resources makes it necessary to monitor and control process variables that may disturb the environment, but which may be very difficult to measure directly, either because there are no physical sensors available, or because these are too expensive. In this work, two soft sensors are proposed for monitoring concentrations of nitrate (NO) and ammonium (NH) ions, and of carbonaceous matter (CM) during nitrification of wastewater. One of them is based on reintegration of a process model to estimate NO and NH and on a feedforward neural network to estimate CM. The other estimator is based on Stacked Neural Networks (SNN), an approach that provides the predictor with robustness. After simulation, both soft sensors were implemented in an experimental unit using FIX MMI (Intellution, Inc) automation software as an interface between the process and MATLAB 5.1 (The Mathworks Inc.) software