137 research outputs found

    Cost calculation and prediction in adult intensive care: A ground-up utilization study

    Get PDF
    Publisher's copy made available with the permission of the publisherThe ability of various proxy cost measures, including therapeutic activity scores (TISS and Omega) and cumulative daily severity of illness scores, to predict individual ICU patient costs was assessed in a prospective “ground-up” utilization costing study over a six month period in 1991. Daily activity (TISS and Omega scores) and utilization in consecutive admissions to three adult university associated ICUs was recorded by dedicated data collectors. Cost prediction used linear regression with determination (80%) and validation (20%) data sets. The cohort, 1333 patients, had a mean (SD) age 57.5 (19.4) years, (41% female) and admission APACHE III score of 58 (27). ICU length of stay and mortality were 3.9 (6.1) days and 17.6% respectively. Mean total TISS and Omega scores were 117 (157) and 72 (113) respectively. Mean patient costs per ICU episode (1991 AUS)wereAUS) were 6801 (10311),withmediancostsof10311), with median costs of 2534, range 106to106 to 95,602. Dominant cost fractions were nursing 43.3% and overheads 16.9%. Inflation adjusted year 2002 (mean) costs were 9343(9343 ( AUS). Total costs in survivors were predicted by Omega score, summed APACHE III score and ICU length of stay; determination R2, 0.91; validation 0.88. Omega was the preferred activity score. Without the Omega score, predictors were age, summed APACHE III score and ICU length of stay; determination R2, 0.73; validation 0.73. In non-survivors, predictors were age and ICU length of stay (plus interaction), and Omega score (determination R2, 0.97; validation 0.91). Patient costs may be predicted by a combination of ICU activity indices and severity scores.J. L. Moran, A. R. Peisach, P. J. Solomon, J. Martinhttp://www.aaic.net.au/Article.asp?D=200403

    CHCHD10 variants in amyotrophic lateral sclerosis: where Is the evidence?

    Get PDF
    Objective: After the initial report of a CHCHD10 mutation in mitochondrial disease with features resembling amyotrophic lateral sclerosis (ALS), CHCHD10 mutations have been considered to be a frequent cause for ALS. However, the exact pathogenicity and clinical significance of these mutations remain unclear. Here, we aimed to determine the role of CHCHD10 mutations in ALS. Methods: We analyzed 4,365 whole genome sequenced ALS patients and 1,832 controls from 7 different countries and examined all nonsynonymous single nucleotide variants in CHCHD10. These were tested for association with ALS, independently and in aggregate using several genetic burden tests (including sequence kernel association test [SKAT], optimal unified test [SKAT-O], and Firth logistic regression). Results: We identified 3 new variants in cases, but only 1 was ALS-specific. lso, 1 control-specific mutation was identified. There was no increased burden of rare coding mutations among ALS patients compared to controls (p=0.86, p=0.86, and p=0.88 for SKAT, SKAT-O, and Firth, respectively). The few carriers with potential pathogenic CHCHD10 mutations exhibited a slowly progressive ALS-like phenotype with atypical features such as myopathy and deafness. Interpretation: CHCHD10 mutations seem to be a far less prevalent cause of pure ALS than previously suggested, and instead appear related to more complex phenotypes. There appears to be insufficient evidence for the pathogenicity of most previously reported variants in pure ALS. This study shows that routine testing for CHCHD10 mutations in pure ALS is not recommended and illustrates the importance of sufficient genetic and functional evidence in establishing pathogenicity of genetic variants

    Project MinE: study design and pilot analyses of a large-scale whole-genome sequencing study in amyotrophic lateral sclerosis

    Get PDF
    The most recent genome-wide association study in amyotrophic lateral sclerosis (ALS) demonstrates a disproportionate contribution from low-frequency variants to genetic susceptibility to disease. We have therefore begun Project MinE, an international collaboration that seeks to analyze whole-genome sequence data of at least 15 000 ALS patients and 7500 controls. Here, we report on the design of Project MinE and pilot analyses of successfully sequenced 1169 ALS patients and 608 controls drawn from the Netherlands. As has become characteristic of sequencing studies, we find an abundance of rare genetic variation (minor allele frequency < 0.1%), the vast majority of which is absent in public datasets. Principal component analysis reveals local geographical clustering of these variants within The Netherlands. We use the whole-genome sequence data to explore the implications of poor geographical matching of cases and controls in a sequence-based disease study and to investigate how ancestry-matched, externally sequenced controls can induce false positive associations. Also, we have publicly released genome-wide minor allele counts in cases and controls, as well as results from genic burden tests

    Software performance of the ATLAS track reconstruction for LHC run 3

    Get PDF
    Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pileup) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60 pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two

    Observation of four-top-quark production in the multilepton final state with the ATLAS detector

    Get PDF
    This paper presents the observation of four-top-quark (tt¯tt¯) production in proton-proton collisions at the LHC. The analysis is performed using an integrated luminosity of 140 fb−1 at a centre-of-mass energy of 13 TeV collected using the ATLAS detector. Events containing two leptons with the same electric charge or at least three leptons (electrons or muons) are selected. Event kinematics are used to separate signal from background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The observed (expected) significance of the measured tt¯tt¯ signal with respect to the standard model (SM) background-only hypothesis is 6.1 (4.3) standard deviations. The tt¯tt¯ production cross section is measured to be 22.5+6.6−5.5 fb, consistent with the SM prediction of 12.0±2.4 fb within 1.8 standard deviations. Data are also used to set limits on the three-top-quark production cross section, being an irreducible background not measured previously, and to constrain the top-Higgs Yukawa coupling and effective field theory operator coefficients that affect tt¯tt¯ production

    Search for excited τ-leptons and leptoquarks in the final state with τ-leptons and jets in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search is reported for excited τ-leptons and leptoquarks in events with two hadronically decaying τ-leptons and two or more jets. The search uses proton-proton (pp) collision data at s√ = 13 TeV recorded by the ATLAS experiment during the Run 2 of the Large Hadron Collider in 2015–2018. The total integrated luminosity is 139 fb−1. The excited τ-lepton is assumed to be produced and to decay via a four-fermion contact interaction into an ordinary τ-lepton and a quark-antiquark pair. The leptoquarks are assumed to be produced in pairs via the strong interaction, and each leptoquark is assumed to couple to a charm or lighter quark and a τ-lepton. No excess over the background prediction is observed. Excited τ-leptons with masses below 2.8 TeV are excluded at 95% CL in scenarios with the contact interaction scale Λ set to 10 TeV. At the extreme limit of model validity where Λ is set equal to the excited τ-lepton mass, excited τ-leptons with masses below 4.6 TeV are excluded. Leptoquarks with masses below 1.3 TeV are excluded at 95% CL if their branching ratio to a charm quark and a τ-lepton equals 1. The analysis does not exploit flavour-tagging in the signal region

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV
    corecore