17 research outputs found

    Determination of two-photon exchange amplitudes from elastic electron-proton scattering data

    Full text link
    Using the available cross section and polarization data for elastic electron-proton scattering, we provide an extraction of the two-photon exchange amplitudes at a common value of four-momentum transfer, around Q^2 = 2.5 GeV^2. This analysis also predicts the e^+ p / e^- p elastic scattering cross section ratio, which will be measured by forthcoming experiments.Comment: 4 pages, 5 figures, updated error analysi

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Repeated superovulation using a simplified FSH/eCG treatment for in vivo embryo production in sheep

    No full text
     This study investigated the efficacy of a simplified repeated superovulation treatment (eCG plus FSH in a single dose, rather than the usual protocol of six decreasing doses of FSH) in the in vivo embryo production in Ojalada donor ewes during the breeding season. In vitro viability after vitrification and warming of embryos recovered from both treatments was also assessed. In addition, the study examined the effects of the concentration of anti-eCG antibodies before each eCG/FSH treatment on in vivo embryo production. Thirty-eight females at the end of their reproductive lives were given the decreasing (n = 19) or simplified (n = 19) superovulatory treatment up to three times at intervals of >= 50 d. The onset of estrus was 5 h earlier (P < 0.05) among ewes that received the eCG/FSH protocol (25.2 +/- 0.80 h) than, it was among those that received the decreasing superovulatory treatment (30.1 +/- 1.0 h), but the two treatments did not differ significantly in ovulation rates or the number and viability of embryos recovered. Both of the superovulatory protocols were significantly (P < 0.05 to P < 0.01) less effective after the first application. After three superovulatory treatments, the average number of viable embryos per ewe was 14.1 +/- 2.3 and 13.7 +/- 2.5 in the decreasing and simplified protocols, respectively. High anti-eCG antibody concentrations just before the superovulatory treatment with eCG/FSH were associated with a significant decrease (P < 0.05) in the rates of fertilization, viability, and freezability, especially in the second and third recoveries. Repeated superovulatory treatments with eCG/FSH can provide an efficient means of producing high quality embryos in the ewes of endangered breeds at the end of their reproductive lives, although further studies are needed to characterize the response associated with high concentrations of anti-eCG antibodies. (C) 2011 Elsevier Inc. All rights reserved
    corecore