26 research outputs found

    Paracrine met signaling triggers epithelial mesenchymal transition in mammary luminal progenitors, affecting their fate

    Get PDF
    HGF/Met signaling has recently been associated with basal-type breast cancers, which are thought to originate from progenitor cells residing in the luminal compartment of the mammary epithelium. We found that ICAM-1 efficiently marks mammary luminal progenitors comprising hormone receptor-positive and receptor-negative cells, presumably ductal and alveolar progenitors. Both cell populations strongly express Met, while HGF is produced by stromal and basal myoepithelial cells. We show that persistent HGF treatment stimulates the clonogenic activity of ICAM1-positive luminal progenitors, controlling their survival and proliferation, and leads to the expression of basal cell characteristics, including stem cell potential. This is accompanied by the induction of Snai1 and Snai2, two major transcription factors triggering epithelial–mesenchymal transition, the repression of the luminal-regulatory genes Elf5 and Hey1, and claudin downregulation. Our data strongly indicate that paracrine Met signaling can control the function of luminal progenitors and modulate their fate during mammary development and tumorigenesis

    Identification and isolation of vinculin from platelets

    Get PDF
    AbstractA vinculin-like protein was identified in chicken as well as in bovine platelets by ELISA competitive binding assay using antibodies against vinculin from chicken gizzard. By a modified procedure (J. Biol. Chem. (1980) 255, 1194–1199) we succeeded in isolating bovine platelet vinculin to apparent homogeneity. The structural identity of platelet and chicken gizzard vinculin was demonstrated by circular dichroism analysis. It was also shown that platelet vinculin induces a significant decrease in the low shear viscosity of F-actin. Vinculin, in all probability, plays an important role in the organization of actin filaments in platelets, especially in the linkages of microfilaments to the membrane

    Beta-catenin regulates P-cadherin expression in mammary basal epithelial cells

    Get PDF
    P-cadherin expression is restricted to the basal layer of stratified epithelia including that of the mammary gland. Although evidence for an important role of P-cadherin in mammary morphogenesis and tumorigenesis is increasing, the mechanisms that regulate its expression are poorly understood. We show that in basal mammary epithelial cells, beta-catenin is associated with the P-cadherin promoter and activates its expression independently of LEF/TCF in a cell-type specific manner. Down-regulation of endogenous beta-catenin levels by RNA interference technique inhibited P-cadherin promoter activity. In vivo, in skin and mammary gland of mutant mice, activation of beta-catenin signalling correlates with up-regulation of P-cadherin expression. These data suggest that beta-catenin-dependent modulation of P-cadherin expression can contribute to the establishment of the basal phenotype

    The seventh ENBDC workshop on methods in mammary gland development and cancer

    Get PDF
    The seventh annual meeting of the European Network of Breast Development and Cancer Laboratories, held in Weggis, Switzerland, in April 2015, was focused on techniques for the study of normal and cancer stem cells, cell fate decisions, cancer initiation and progression
    corecore