160 research outputs found

    Pion and sigma meson properties in a relativistic quark model

    Full text link
    A variety of strong and electroweak interaction properties of the pion and the light scalar sigma meson are computed in a relativistic quark model. Under the assumption that the resulting coupling of these mesons to the constituent quarks is identical, the sigma meson mass is determined as M_sigma=385.4 MeV. We discuss in detail the gauging of the non-local meson-quark interaction and calculate the electromagnetic form factor of the pion and the form factors of the pi(0) -> gamma gamma and sigma -> gamma gamma processes. We obtain explicit expressions for the relevant form factors and evaluate the leading and next-to-leading orders for large Euclidean photon virtualities. Turning to the decay properties of the sigma we determine the width of the electromagnetic sigma -> gamma gamma transition and discuss the strong decay sigma -> pi pi. In a final step we compute the nonleptonic decays D -> sigma pi and B -> sigma pi relevant for the possible observation of the sigma meson. All our results are compared to available experimental data and to results of other theoretical studies.Comment: 46 page

    Exclusive c -> s, d Semileptonic Decays of Spin-1/2 and Spin-3/2 cb Baryons

    Get PDF
    We present results for exclusive semileptonic decay widths of ground state spin-1/2 and spin-3/2 cb baryons corresponding to a c -> s, d transition at the quark level. The relevance of hyperfine mixing in spin-1/2 cb baryons is shown. Our form factors are compatible with heavy quark spin symmetry constraints obtained in the infinite heavy quark mass limit

    Charged lepton Flavor Violation in Supersymmetry with Bilinear R-Parity Violation

    Get PDF
    The simplest unified extension of the Minimal Supersymmetric Standard Model with bi-linear R-parity violation naturally predicts a hierarchical neutrino mass spectrum, suitable to explain atmospheric and solar neutrino fluxes. We study whether the individual violation of the lepton numbers L_{e,mu,tau} in the charged sector can lead to measurable rates for BR(mu->e gamma)and $BR(tau-> mu gamma). We find that some of the R-parity violating terms that are compatible with the observed atmospheric neutrino oscillations could lead to rates for mu->e gamma measurable in projected experiments. However, the Delta m^2_{12} obtained for those parameters is too high to be compatible with the solar neutrino data, excluding therefore the possibility of having measurable rates for mu->e gamma in the model.Comment: 29 pages, 8 figures. Constraint from solar neutrino data included, conclusions changed respect v

    Expectation values of four-quark operators in pions

    Get PDF
    The values of four-quark operators averaged over pions are expressed through those averaged over vacuum. The specific values are obtained in the framework of the factorization assumption. For the condensates of the light quarks of the same flavour \bar q\Gamma q\bar q\Gamma q the scalar condensate is shown to be an order of magnitude larger than the other ones. The condensates containing the strange quarks \bar q q\bar s s appear to be only about twice smaller than those of the light quarks. The degeneracy of the ground state in the Nambu--Jona--Lasinio model is shown explicitly.Comment: 9 pages, no figures, typos correcte

    A quark model analysis of the charge symmetry breaking in nuclear force

    Full text link
    In order to investigate the charge symmetry breaking (CSB) in the short range part of the nuclear force, we calculate the difference of the masses of the neutron and the proton, ΔM\Delta {\rm M}, the difference of the scattering lengths of the p-p and n-n scatterings, Δa\Delta a, and the difference of the analyzing power of the proton and the neutron in the n-p scattering, ΔA(θ)\Delta A(\theta), by a quark model. In the present model the sources of CSB are the mass difference of the up and down quarks and the electromagnetic interaction. We investigate how much each of them contributes to ΔM\Delta {\rm M}, Δa\Delta a and ΔA(θ)\Delta A(\theta). It is found that the contribution of CSB of the short range part in the nuclear force is large enough to explain the observed ΔA(θ)\Delta A(\theta), while Δa\Delta a is rather underestimated.Comment: 26 pages,6 figure

    QCD sum rules analysis of the rare B_c \rar X\nu\bar{\nu} decays

    Full text link
    Taking into account the gluon correction contributions to the correlation function, the form factors relevant to the rare B_c \rar X \nu\bar{\nu} decays are calculated in the framework of the three point QCD sum rules, where XX stands for axial vector particle, AV(Ds1)AV(D_{s1}), and vector particles, V(D,Ds)V(D^*,D^*_s). The total decay width as well as the branching ratio of these decays are evaluated using the q2q^2 dependent expressions of the form factors. A comparison of our results with the predictions of the relativistic constituent quark model is presented.Comment: 21 Pages, 2 Figures and 5 Table

    Formation of an ordered phase in neutron star matter

    Get PDF
    In this work, we explore the possible formation of ordered phases in hadronic matter, related to the presence of hyperons at high densities. We analyze a microscopic mechanism which can lead to the crystallization of the hyperonic sector by the confinement of the hyperons on the nodes of a lattice. For this purpose, we introduce a simplified model of the hadronic plasma, in which the nuclear interaction between protons, neutrons and hyperons is mediated by meson fields. We find that, for some reasonable sets of values of the model parameters, such ordered phases are energetically favoured as density increases beyond a threshold value.Comment: 16 pages, 14 figures, submitted to NP

    Flavourful hadronic physics

    Full text link
    We review theoretical approaches to form factors that arise in heavy-meson decays and are hadronic expressions of non-perturbative QCD. After motivating their origin in QCD factorisation, we retrace their evolution from quark-model calculations to non-perturbative QCD techniques with an emphasis on formulations of truncated heavy-light amplitudes based upon Dyson-Schwinger equations. We compare model predictions exemplarily for the B\to\pi transition form factor and discuss new results for the g_{D*D\pi} coupling in the hadronic D* decay.Comment: Based on a talk given at Light Cone 2009: Relativistic Hadronic And Particle Physics, 8-13 July 2009, Sao Jose dos Campos, Sao Paulo, Brazi

    General analysis of the rare Bc->D^*_s l^+ l^- decay beyond the standard model

    Full text link
    The general analysis of the rare Bc->D^*_s l^+ l^- decay is presented by using the most general, model independent effective Hamiltonian. The dependencies of the branching ratios, longitudinal, normal and transversal polarization asymmetries for l^- and the combined asymmetries for l^- and l^+ on the new Wilson coefficients are investigated. Our analysis shows that the lepton polarization asymmetries are very sensitive to the scalar and tensor type interactions, which will be very useful in looking for new physics beyond the standard model.Comment: 27 Pages, 14 Figure

    f0(980) meson as a K bar K molecule in a phenomenological Lagrangian approach

    Full text link
    We discuss a possible interpretation of the f0(980) meson as a hadronic molecule - a bound state of K and bar K mesons. Using a phenomenological Lagrangian approach we calculate the strong f0(980) to pi pi and electromagnetic f0(980) to gamma gamma decays. The compositeness condition provides a self-consistent method to determine the coupling constant between f0 and its constituents, K and bar K. Form factors governing the decays of the f0(980) are calculated by evaluating the kaon loop integrals. The predicted f0(980) to pi pi and f0(980) to gamma gamma decay widths are in good agreement with available data and results of other theoretical approaches.Comment: 21 pages, 11 figures, revised version accepted for publication in Eur. Phys. J.
    corecore