4 research outputs found
Characterization of anticoagulant heparinoids by immunoprofiling
Heparinoids are used in the clinic as anticoagulants. A specific pentasaccharide in heparinoids activates antithrombin III, resulting in inactivation of factor Xa and–when additional saccharides are present–inactivation of factor IIa. Structural and functional analysis of the heterogeneous heparinoids generally requires advanced equipment, is time consuming, and needs (extensive) sample preparation. In this study, a novel and fast method for the characterization of heparinoids is introduced based on reactivity with nine unique anti-heparin antibodies. Eight heparinoids were biochemically analyzed by electrophoresis and their reactivity with domain-specific anti-heparin antibodies was established by ELISA. Each heparinoid displayed a distinct immunoprofile matching its structural characteristics. The immunoprofile could also be linked to biological characteristics, such as the anti-Xa/anti-IIa ratio, which was reflected by reactivity of the heparinoids with antibodies HS4C3 (indicative for 3-O-sulfates) and HS4E4 (indicative for domains allowing anti-factor IIa activity). In addition, the immunoprofile could be indicative for heparinoid-induced side-effects, such as heparin-induced thrombocytopenia, as illustrated by reactivity with antibody NS4F5, which defines a very high sulfated domain. In conclusion, immunoprofiling provides a novel, fast, and simple methodology for the characterization of heparinoids, and allows high-throughput screening of (new) heparinoids for defined structural and biological characteristics
Antibody GD3G7 Selected against Embryonic Glycosaminoglycans Defines Chondroitin Sulfate-E Domains Highly Up-Regulated in Ovarian Cancer and Involved in Vascular Endothelial Growth Factor Binding
Chondroitin sulfate (CS) is abundantly present in the tumor stroma, and tumor-specific CS modifications might be potential targets to influence tumor development. We applied the phage display technology to select antibodies that identify these tumor-specific CS modifications. Antibody GD3G7 was selected against embryonic glycosaminoglycans, and it reacted strongly with CS-E (rich in GlcA-GalNAc4S6S units). In ovarian adenocarcinomas, strong expression of this CS-E epitope was found in the extracellular matrix, and occasionally on tumor cells. No expression was found in normal ovary and cystadenomas. Differential expression was found in ovarian carcinoma cell lines, which correlated with the gene expression of the GalNAc4S-6st enzyme, involved in biosynthesis of CS-E. Vascular endothelial growth factor (VEGF)-sensitive fenestrated (in normal tissues) and tumor blood vessels were both identified by antibody GD3G7, which might implicate a role for CS-E in VEGF biology. VEGF bound to CS-E and antibody GD3G7 could compete for binding of VEGF to CS-E. In conclusion, antibody GD3G7 identified rare CS-E-like structures that were strongly expressed in ovarian adenocarcinomas. This antibody might therefore be instrumental for identifying tumor-related CS alterations
Dermatan sulfate domains defined by the novel antibody GD3A12, in normal tissues and ovarian adenocarcinomas.
Contains fulltext :
80140.pdf (publisher's version ) (Closed access)Dermatan sulfate (DS) expression in normal tissue and ovarian cancer was investigated using the novel, phage display-derived antibody GD3A12 that was selected against embryonic glycosaminoglycans (GAGs). Antibody GD3A12 was especially reactive with DS rich in IdoA-GalNAc4S disaccharide units. IdoA residues are important for antibody recognition as DS polymers with low numbers of IdoA residues were less reactive, and expression of the DS epimerase in ovarian carcinoma cells was associated with expression of the GD3A12 epitope. Moreover, staining of antibody GD3A12 was abolished by chondroitinase-B lyase digestion. Expression of DS domains defined by antibody GD3A12 was confined to connective tissue of most organs examined and presented as a typical fibrillar-type of staining. Differential expression of the DS epitopes recognized by antibodies GD3A12 and LKN1 (4/2,4 di-O-sulfated DS) was best seen in thymus and spleen, indicating differential expression of various DS domains in these organs. In ovarian carcinomas strong DS expression was found in the stromal parts, and occasionally on tumor cells. Partial co-localization in ovarian carcinomas was observed with decorin, versican and type I collagen suggesting a uniform distribution of this specific DS epitope. This unique anti-DS antibody may be instrumental to investigate the function, expression, and localization of specific DS domains in health and disease