346,266 research outputs found

    Acoustic suspension system

    Get PDF
    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector

    Foaming in stout beers

    Full text link
    We review the differences between bubble formation in champagne and other carbonated drinks, and stout beers which contain a mixture of dissolved nitrogen and carbon dioxide. The presence of dissolved nitrogen in stout beers gives them a number of properties of interest to connoisseurs and physicists. These remarkable properties come at a price: stout beers do not foam spontaneously and special technology, such as the widgets used in cans, is needed to promote foaming. Nevertheless the same mechanism, nucleation by gas pockets trapped in cellulose fibres, responsible for foaming in carbonated drinks is active in stout beers, but at an impractically slow rate. This gentle rate of bubble nucleation makes stout beers an excellent model system for the scientific investigation of the nucleation of gas bubbles. The equipment needed is very modest, putting such experiments within reach of undergraduate laboratories. Finally we consider the suggestion that a widget could be constructed by coating the inside of a beer can with cellulose fibres.Comment: 9 pages, 10 figures. Review articl

    Unified description of pairing, trionic and quarteting states for one-dimensional SU(4) attractive fermions

    Full text link
    Paired states, trions and quarteting states in one-dimensional SU(4) attractive fermions are investigated via exact Bethe ansatz calculations. In particular, quantum phase transitions are identified and calculated from the quarteting phase into normal Fermi liquid, trionic states and spin-2 paired states which belong to the universality class of linear field-dependent magnetization in the vicinity of critical points. Moreover, unified exact results for the ground state energy, chemical potentials and complete phase diagrams for isospin S=1/2,1,3/2S=1/2, 1, 3/2 attractive fermions with external fields are presented. Also identified are the magnetization plateaux of mz=Ms/3m^z=M_s/3 and mz=2Ms/3m^z=2M_s/3, where MsM_s is the magnetization saturation value. The universality of finite-size corrections and collective dispersion relations provides a further test ground for low energy effective field theory.Comment: 13 pages, 4 figure

    Local Spin Susceptibility of the S=1/2 Kagome Lattice in ZnCu3(OD)6Cl2

    Full text link
    We report single-crystal 2-D NMR investigation of the nearly ideal spin S=1/2 kagome lattice ZnCu3(OD)6Cl2. We successfully identify 2-D NMR signals originating from the nearest-neighbors of Cu2+ defects occupying Zn sites. From the 2-D Knight shift measurements, we demonstrate that weakly interacting Cu2+ spins at these defects cause the large Curie-Weiss enhancement toward T=0 commonly observed in the bulk susceptibility data. We estimate the intrinsic spin susceptibility of the kagome planes by subtracting defect contributions, and explore several scenarios.Comment: 4 figures; published in PR-B Rapid Communication

    The nature of power corrections in large β0\beta_0 approximation

    Full text link
    We investigate the nature of power corrections and infrared renormalon singularities in large β0\beta_0 approximation. We argue that the power correction associated with a renormalon pole singularity should appear at O(1), in contrast to the renormalon ambiguity appearing at O(1/β0)O(1/\beta_0), and give an explanation why the leading order renormalon singularities are generically poles.Comment: 6 page

    The vibrational predissociation spectroscopy of hydrogen cluster ions

    Get PDF
    The first infrared spectra of protonated hydrogen clusters in the gas phase have been observed. Predissociation spectra were taken with a tandem mass spectrometer: mass selected hydrogen cluster ions were irradiated inside a rf ion trap by a tunable infrared laser, and the fragment ions created by photodissociation of the clusters were mass selected and detected. Spectra for each product channel were measured by counting fragment ions as a function of laser frequency. Low resolution spectra (Deltanu=10 cm^−1) in the region from 3800 to 4200 cm^−1 were observed for the ions H + 5, H + 7, and H + 9 at 3910, 3980, and 4020 cm−1, respectively. A band was also observed for H + 5 at 3532 cm^−1. No rotational structure was resolved. The frequencies of the band maxima agree well with the frequencies predicted by previous ab initio calculations for the highest modes

    Global structure of thermal tides in the upper cloud layer of Venus revealed by LIR onboard Akatsuki

    Full text link
    Longwave Infrared Camera (LIR) onboard Akatsuki first revealed the global structure of the thermal tides in the upper cloud layer of Venus. The data were acquired over three Venusian years, and the analysis was done over the areas from the equator to the mid-latitudes in both hemispheres and over the whole local time. Thermal tides at two vertical levels were analyzed by comparing data at two different emission angles. Dynamical wave modes consisting of tides were identified; the diurnal tide consisted mainly of Rossby-wave and gravity-wave modes, while the semidiurnal tide predominantly consisted of a gravity-wave mode. The revealed vertical structures were roughly consistent with the above wave modes, but some discrepancy remained if the waves were supposed to be monochromatic. In turn, the heating profile that excites the tidal waves can be constrained to match this discrepancy, which would greatly advance the understanding of the Venusian atmosphere.Comment: 27 pages, 8 figure
    corecore