688 research outputs found
Automatic guiding of the primary image of solar Gregory telescopes
The primary image reflected from the field-stop of solar Gregory telescopes is used for automatic guiding. This new system avoids temporal varying influences from the bending of the telescope tube by the main mirror's gravity and
from offsets between the telescope and a separate guiding refractor. The required
stiffness of the guider mechanics and the small areas of the sensors demand small
f-numbers for the guider optics, which cause problems with the image quality and
with heat. Problems also arise from the imaging of the pinhole in the telescope's
field stop. The corresponding lack of image information at that location can be
reduced numerically by Fourier methods much more effectively than with profile
centering methods. Several types of such guiders are tested, a final equipment,
now installed at the Gregory telescopes at Tenerife and at Locarno, is described
Competition between normal and intruder states inside the "Island of Inversion"
The beta decay of the exotic 30Ne (N=20) is reported. For the first time, the
low-energy level structure of the N=19, 30Na (Tz = 4), is obtained from
beta-delayed gamma spectroscopy using fragment-beta-gamma-gamma coincidences.
The level structure clearly displays "inversion", i.e., intruder states with
mainly 2p2h configurations displacing the normal states to higher excitation
energies. The good agreement in excitation energies and the weak and
electromagnetic decay patterns with Monte Carlo Shell Model calculations with
the SDPF-M interaction in the sdpf valence space illustrates the small d3/2 -
f7/2 shell gap. The relative position of the "normal dominant" and "intruder
dominant" excited states provides valuable information to understand better the
N=20 shell gap.Comment: 4 pages, 5 figure
Spectroscopy of neutron-unbound F
The ground state of F has been observed as an unbound resonance
keV above the ground state of F. Comparison of this
result with USDA/USDB shell model predictions leads to the conclusion that the
F ground state is primarily dominated by -shell configurations. Here
we present a detailed report on the experiment in which the ground state
resonance of F was first observed. Additionally, we report the first
observation of a neutron-unbound excited state in F at an excitation
energy of keV.Comment: 10 pages, 11 figures, Accepted for publication in Phys. Rev.
Beta decay of 71,73Co; probing single particle states approaching doubly magic 78Ni
Low-energy excited states in 71,73Ni populated via the {\beta} decay of
71,73Co were investigated in an experiment performed at the National
Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU).
Detailed analysis led to the construction of level schemes of 71,73Ni, which
are interpreted using systematics and analyzed using shell model calculations.
The 5/2- states attributed to the the f5/2 orbital and positive parity 5/2+ and
7/2+ states from the g9/2 orbital have been identified in both 71,73Ni. In 71Ni
the location of a 1/2- {\beta}-decaying isomer is proposed and limits are
suggested as to the location of the isomer in 73Ni. The location of positive
parity cluster states are also identified in 71,73Ni. Beta-delayed neutron
branching ratios obtained from this data are given for both 71,73Co.Comment: Accepted for publication in PR
Is the structure of 42Si understood?
A more detailed test of the implementation of nuclear forces that drive shell
evolution in the pivotal nucleus \nuc{42}{Si} -- going beyond earlier
comparisons of excited-state energies -- is important. The two leading
shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which
reproduce the low-lying \nuc{42}{Si}() energy, but whose predictions for
other observables differ significantly, are interrogated by the population of
states in neutron-rich \nuc{42}{Si} with a one-proton removal reaction from
\nuc{43}{P} projectiles at 81~MeV/nucleon. The measured cross sections to the
individual \nuc{42}{Si} final states are compared to calculations that combine
eikonal reaction dynamics with these shell-model nuclear structure overlaps.
The differences in the two shell-model descriptions are examined and linked to
predicted low-lying excited states and shape coexistence. Based on the
present data, which are in better agreement with the SDPF-MU calculations, the
state observed at 2150(13)~keV in \nuc{42}{Si} is proposed to be the ()
level.Comment: accepted in Physical Review Letter
- …