38,474 research outputs found
Isoscalar mesons upon unbreaking of chiral symmetry
In a dynamical lattice simulation with the overlap Dirac operator and
mass degenerate quarks we study all possible and correlators upon
exclusion of the low lying "quasi-zero" modes from the valence quark
propagators. After subtraction of a small amount of such Dirac eigenmodes all
disconnected contributions vanish and all possible point-to-point
correlators with different quantum numbers become identical, signaling a
restoration of the . The original ground
state of the meson does not survive this truncation, however. In
contrast, in the and channels for the correlators the ground
states have a very clean exponential decay. All possible chiral multiplets for
the mesons become degenerate, indicating a restoration of an
symmetry of the dynamical QCD-like string.Comment: 10 pages, 13 figure
Principals of the theory of light reflection and absorption by low-dimensional semiconductor objects in quantizing magnetic fields at monochromatic and pulse excitations
The bases of the theory of light reflection and absorption by low-dimensional
semiconductor objects (quantum wells, wires and dots) at both monochromatic and
pulse irradiations and at any form of light pulses are developed. The
semiconductor object may be placed in a stationary quantizing magnetic field.
As an example the case of normal light incidence on a quantum well surface is
considered. The width of the quantum well may be comparable to the light wave
length and number of energy levels of electronic excitations is arbitrary. For
Fourier-components of electric fields the integral equation (similar to the
Dyson-equation) and solutions of this equation for some individual cases are
obtained.Comment: 14 page
Quantum critical behaviour of the plateau-insulator transition in the quantum Hall regime
High-field magnetotransport experiments provide an excellent tool to
investigate the plateau-insulator phase transition in the integral quantum Hall
effect. Here we review recent low-temperature high-field magnetotransport
studies carried out on several InGaAs/InP heterostructures and an InGaAs/GaAs
quantum well. We find that the longitudinal resistivity near the
critical filling factor ~ 0.5 follows the universal scaling law
, where . The critical exponent equals ,
which indicates that the plateau-insulator transition falls in a non-Fermi
liquid universality class.Comment: 8 pages, accepted for publication in Proceedings of the Yamada
Conference LX on Research in High Magnetic Fields (August 16-19, 2006,
Sendai
Profile alterations of a symmetrical light pulse coming through a quantum well
The theory of a response of a two-energy-level system, irradiated by
symmetrical light pulses, has been developed.(Suchlike electronic system
approximates under the definite conditions a single ideal quantum well (QW) in
a strong magnetic field {\bf H}, directed perpendicularly to the QW's plane, or
in magnetic field absence.) The general formulae for the time-dependence of
non-dimensional reflection {\cal R}(t), absorption {\cal A}(t) and transmission
{\cal T}(t) of a symmetrical light pulse have been obtained. It has been shown
that the singularities of three types exist on the dependencies {\cal R}(t),
{\cal A}(t), {\cal T}(t). The oscillating time dependence of {\cal R}(t), {\cal
A}(t), {\cal T}(t) on the detuning frequency \Delta\omega=\omega_l-\omega_0
takes place. The oscillations are more easily observable when
\Delta\omega\simeq\gamma_l. The positions of the total absorption, reflection
and transparency singularities are examined when the frequency \omega_l is
detuned.Comment: 9 pages, 13 figures with caption
Photon-Photon Collisions with SuperChic
The SuperChic Monte Carlo generator provides a common platform for
QCD-mediated, photoproduction and photon-induced Central Exclusive Production
(CEP), with a fully differential treatment of soft survival effects. In these
proceedings we summarise the processes generated, before discussing in more
detail those due to photon-photon collisions, paying special attention to the
correct treatment of the survival factor. We briefly consider the
light-by-light scattering process as an example, before discussing planned
extensions and refinements for the generator.Comment: 6 pages, 2 figures. Submitted to proceedings of the PHOTON 2017
conferenc
Symmetries of hadrons after unbreaking the chiral symmetry
We study hadron correlators upon artificial restoration of the spontaneously
broken chiral symmetry. In a dynamical lattice simulation we remove the lowest
lying eigenmodes of the Dirac operator from the valence quark propagators and
study evolution of the hadron masses obtained. All mesons and baryons in our
study, except for a pion, survive unbreaking the chiral symmetry and their
exponential decay signals become essentially better. From the analysis of the
observed spectroscopic patterns we conclude that confinement still persists
while the chiral symmetry is restored. All hadrons fall into different chiral
multiplets. The broken U(1)_A symmetry does not get restored upon unbreaking
the chiral symmetry. We also observe signals of some higher symmetry that
includes chiral symmetry as a subgroup. Finally, from comparison of the \Delta
- N splitting before and after unbreaking of the chiral symmetry we conclude
that both the color-magnetic and the flavor-spin quark-quark interactions are
of equal importance.Comment: 12 pages, 14 figures; final versio
Influence of Anomalous Dispersion on Optical Characteristics of Quantum Wells
Frequency dependencies of optical characteristics (reflection, transmission
and absorption of light) of a quantum well are investigated in a vicinity of
interband resonant transitions in a case of two closely located excited energy
levels. A wide quantum well in a quantizing magnetic field directed normally to
the quantum-well plane, and monochromatic stimulating light are considered.
Distinctions between refraction coefficients of barriers and quantum well, and
a spatial dispersion of the light wave are taken into account. It is shown that
at large radiative lifetimes of excited states in comparison with nonradiative
lifetimes, the frequency dependence of the light reflection coefficient in the
vicinity of resonant interband transitions is defined basically by a curve,
similar to the curve of the anomalous dispersion of the refraction coefficient.
The contribution of this curve weakens at alignment of radiative and
nonradiative times, it is practically imperceptible at opposite ratio of
lifetimes . It is shown also that the frequency dependencies similar to the
anomalous dispersion do not arise in transmission and absorption coefficients.Comment: 10 pages, 6 figure
Observation of discrete energy levels in a quantum confined system
Low temperature scanning tunneling microscope images and spectroscopic data
have been obtained on subnanometer size Pb clusters fabricated using the
technique of buffer layer assisted growth. Discrete energy levels were resolved
in current-voltage characteristics as current peaks rather than current steps.
Distributions of peak voltage spacings and peak current heights were consistent
with Wigner-Dyson and Porter-Thomas distributions respectively, suggesting the
relevance of random matrix theory to the description of the electronic
eigenstates of the clusters. The observation of peaks rather than steps in the
current-voltage characteristics is attributed to a resonant tunneling process
involving the discrete energy levels of the cluster, the tip, and the states at
the interface between the cluster and the substrate surface.Comment: 4 pages, 4 figure
Quantum phase transition in the Dicke model with critical and non-critical entanglement
We study the quantum phase transition of the Dicke model in the classical
oscillator limit, where it occurs already for finite spin length. In contrast
to the classical spin limit, for which spin-oscillator entanglement diverges at
the transition, entanglement in the classical oscillator limit remains small.
We derive the quantum phase transition with identical critical behavior in the
two classical limits and explain the differences with respect to quantum
fluctuations around the mean-field ground state through an effective model for
the oscillator degrees of freedom. With numerical data for the full quantum
model we study convergence to the classical limits. We contrast the classical
oscillator limit with the dual limit of a high frequency oscillator, where the
spin degrees of freedom are described by the Lipkin-Meshkov-Glick model. An
alternative limit can be defined for the Rabi case of spin length one-half, in
which spin frequency renormalization replaces the quantum phase transition.Comment: 1o pages, 10 figures, published versio
Effects of the low lying Dirac modes on excited hadrons in lattice QCD
Chiral symmetry breaking in Quantum Chromodynamics is associated with the low
lying spectral modes of the Dirac operator according to the Banks-Casher
relation. Here we study how removal of a variable number of low lying modes
from the valence quark sector affects the masses of the ground states and first
excited states of baryons and mesons in two flavor lattice QCD.Comment: 6 pages, 2 figures. Contribution to proceedings of "Excited QCD
2012", May 6-12, 2012, Peniche, Portuga
- …
