558 research outputs found

    Solution of the Two-Channel Anderson Impurity Model - Implications for the Heavy Fermion UBe13_{13} -

    Full text link
    We solve the two-channel Anderson impurity model using the Bethe-Ansatz. We determine the ground state and derive the thermodynamics, obtaining the impurity entropy and specific heat over the full range of temperature. We show that the low temperature physics is given by a line of fixed points decribing a two-channel non Fermi liquid behavior in the integral valence regime associated with moment formation as well as in the mixed valence regime where no moment forms. We discuss relevance for the theory of UBe13_{13}.Comment: 4 pages, 2 figures, (to be published in PRL

    The Pioneer anomaly and the holographic scenario

    Full text link
    In this paper we discuss the recently obtained relation between the Verlinde's holographic model and the first phenomenological Modified Newtonian dynamics. This gives also a promising possible explanation to the Pioneer anomaly.Comment: 5 pages, Accepted for publication in Astrophysics & Space Scienc

    Novel Microdialysis Technique Reveals a Dramatic Shift in Metabolite Secretion during the Early Stages of the Interaction between the Ectomycorrhizal Fungus Pisolithus microcarpus and Its Host Eucalyptus grandis

    Get PDF
    The colonisation of tree roots by ectomycorrhizal (ECM) fungi is the result of numerous signalling exchanges between organisms, many of which occur before physical contact. However, information is lacking about these exchanges and the compounds that are secreted by each organism before contact. This is in part due to a lack of low disturbance sampling methods with sufficient temporal and spatial resolution to capture these exchanges. Using a novel in situ microdialysis approach, we sampled metabolites released from Eucalyptus grandis and Pisolithus microcarpus independently and during indirect contact over a 48-h time-course using UPLC-MS. A total of 560 and 1530 molecular features (MFs; ESI- and ESI+ respectively) were identified with significant differential abundance from control treatments. We observed that indirect contact between organisms altered the secretion of MFs to produce a distinct metabolomic profile compared to either organism independently. Many of these MFs were produced within the first hour of contact and included several phenylpropanoids, fatty acids and organic acids. These findings show that the secreted metabolome, particularly of the ECM fungus, can rapidly shift during the early stages of pre-symbiotic contact and highlight the importance of observing these early interactions in greater detail. We present microdialysis as a useful tool for examining plant-fungal signalling with high temporal resolution and with minimal experimental disturbance

    Effect of four plant species on soil 15N-access and herbage yield in temporary agricultural grasslands

    Get PDF
    Positive plant diversity-productivity relationships have been reported for experimental semi-natural grasslands (Cardinale et al. 2006; Hector et al. 1999; Tilman et al. 1996) as well as temporary agricultural grasslands (Frankow-Lindberg et al. 2009; Kirwan et al. 2007; Nyfeler et al. 2009; Picasso et al. 2008). Generally, these relationships are explained, on the one hand, by niche differentiation and facilitation (Hector et al. 2002; Tilman et al. 2002) and, on the other hand, by greater probability of including a highly productive plant species in high diversity plots (Huston 1997). Both explanations accept that diversity is significant because species differ in characteristics, such as root architecture, nutrient acquisition and water use efficiency, to name a few, resulting in composition and diversity being important for improved productivity and resource use (Naeem et al. 1994; Tilman et al. 2002). Plant diversity is generally low in temporary agricultural grasslands grown for ruminant fodder production. Grass in pure stands is common, but requires high nitrogen (N) inputs. In terms of N input, two-species grass-legume mixtures are more sustainable than grass in pure stands and consequently dominate low N input grasslands (Crews and Peoples 2004; Nyfeler et al. 2009; Nyfeler et al. 2011). In temperate grasslands, N is often the limiting factor for productivity (Whitehead 1995). Plant available soil N is generally concentrated in the upper soil layers, but may leach to deeper layers, especially in grasslands that include legumes (Scherer-Lorenzen et al. 2003) and under conditions with surplus precipitation (Thorup-Kristensen 2006). To improve soil N use efficiency in temporary grasslands, we propose the addition of deep-rooting plant species to a mixture of perennial ryegrass and white clover, which are the most widespread forage plant species in temporary grasslands in a temperate climate (Moore 2003). Perennial ryegrass and white clover possess relatively shallow root systems (Kutschera and Lichtenegger 1982; Kutschera and Lichtenegger 1992) with effective rooting depths of <0.7 m on a silt loamy site (Pollock and Mead 2008). Grassland species, such as lucerne and chicory, grow their tap-roots into deep soil layers and exploit soil nutrients and water in soil layers that the commonly grown shallow-rooting grassland species cannot reach (Braun et al. 2010; Skinner 2008). Chicory grown as a catch crop after barley reduced the inorganic soil N down to 2.5 m depth during the growing season, while perennial ryegrass affected the inorganic soil N only down to 1 m depth (Thorup-Kristensen 2006). Further, on a Wakanui silt loam in New Zealand chicory extracted water down to 1.9 m and lucerne down to 2.3 m soil depth, which resulted in greater herbage yields compared with a perennial ryegrass-white clover mixture, especially for dryland plots (Brown et al. 2005). There is little information on both the ability of deep- and shallow-rooting grassland species to access soil N from different vertical soil layers and the relation of soil N-access and herbage yield in temporary agricultural grasslands. Therefore, the objective of the present work was to test the hypotheses 1) that a mixture comprising both shallow- and deep-rooting plant species has greater herbage yields than a shallow-rooting binary mixture and pure stands, 2) that deep-rooting plant species (chicory and lucerne) are superior in accessing soil N from 1.2 m soil depth compared with shallow-rooting plant species, 3) that shallow-rooting plant species (perennial ryegrass and white clover) are superior in accessing soil N from 0.4 m soil depth compared with deep-rooting plant species, 4) that a mixture of deep- and shallow-rooting plant species has greater access to soil N from three soil layers compared with a shallow-rooting two-species mixture and that 5) the leguminous grassland plants, lucerne and white clover, have a strong impact on grassland N acquisition, because of their ability to derive N from the soil and the atmosphere

    Mixed-valent regime of the two-channel Anderson impurity as a model for UBe_13

    Full text link
    We investigate the mixed-valent regime of a two-configuration Anderson impurity model for uranium ions, with separate quadrupolar and magnetic doublets. With a new Monte Carlo approach and the non-crossing approximation we find: (i) A non-Fermi-liquid fixed point with two-channel Kondo model critical behavior; (ii) Distinct energy scales for screening the low-lying and excited doublets; (iii) A semi-quantitative explanation of magnetic-susceptibility data for U1x_{1-x}Thx_xBe13_{13} assuming 60-70% quadrupolar doublet ground-state weight, supporting the quadrupolar-Kondo interpretation.Comment: 4 Pages, 3 eps figures; submitted to Phys. Rev. Let

    Managing risks to drivers in road transport

    Get PDF
    This report presents a number of case studies in managing risks to road transport drivers. The cases feature a variety of initiatives and interventions to protect drivers.In the road transport sector, as with any other, it is important to pay attention to working conditions in order to ensure a skilled and motivated workforce. Certain characteristics of the sector make it more difficult to practice risk management than in other sectors. But by taking account of how the sector operates in practice, and the characteristics of drivers themselves and the way they work, risks can be successfully manage

    The Age-Redshift Relation for Standard Cosmology

    Full text link
    We present compact, analytic expressions for the age-redshift relation τ(z)\tau(z) for standard Friedmann-Lema\^ \itre-Robertson-Walker (FLRW) cosmology. The new expressions are given in terms of incomplete Legendre elliptic integrals and evaluate much faster than by direct numerical integration.Comment: 13 pages, 3 figure

    PrP Expression, PrPSc Accumulation and Innervation of Splenic Compartments in Sheep Experimentally Infected with Scrapie

    Get PDF
    BACKGROUND: In prion disease, the peripheral expression of PrP(C) is necessary for the transfer of infectivity to the central nervous system. The spleen is involved in neuroinvasion and neural dissemination in prion diseases but the nature of this involvement is not known. The present study undertook the investigation of the spatial relationship between sites of PrP(Sc) accumulation, localisation of nerve fibres and PrP(C) expression in the tissue compartments of the spleen of scrapie-inoculated and control sheep. METHODOLOGY/PRINCIPAL FINDINGS: Laser microdissection and quantitative PCR were used to determine PrP mRNA levels and results were compared with immunohistochemical protocols to distinguish PrP(C) and PrP(Sc) in tissue compartments of the spleen. In sheep experimentally infected with scrapie, the major sites of accumulation of PrP(Sc) in the spleen, namely the lymphoid nodules and the marginal zone, expressed low levels of PrP mRNA. Double immunohistochemical labelling for PrP(Sc) and the pan-nerve fibre marker, PGP, was used to evaluate the density of innervation of splenic tissue compartments and the intimacy of association between PrP(Sc) and nerves. Some nerve fibres were observed to accompany blood vessels into the PrP(Sc)-laden germinal centres. However, the close association between nerves and PrP(Sc) was most apparent in the marginal zone. Other sites of close association were adjacent to the wall of the central artery of PALS and the outer rim of germinal centres. CONCLUSIONS/SIGNIFICANCE: The findings suggest that the degree of PrP(Sc) accumulation does not depend on the expression level of PrP(C). Though several splenic compartments may contribute to neuroinvasion, the marginal zone may play a central role in being the compartment with most apparent association between nerves and PrP(Sc)

    The circadian clock regulates rhythmic erythropoietin expression in the murine kidney

    Get PDF
    Generation of circadian rhythms is cell-autonomous and relies on a transcription/translation feedback loop controlled by a family of circadian clock transcription factor activators including CLOCK, BMAL1 and repressors such as CRY1 and CRY2. The aim of the present study was to examine both the molecular mechanism and the hemopoietic implication of circadian erythropoietin expression. Mutant mice with homozygous deletion of the core circadian clock genes cryptochromes 1 and 2 (Cry-null) were used to elucidate circadian erythropoietin regulation. Wild-type control mice exhibited a significant difference in kidney erythropoietin mRNA expression between circadian times 06 and 18. In parallel, a significantly higher number of erythropoietin-producing cells in the kidney (by RNAscope®) and significantly higher levels of circulating erythropoietin protein (by ELISA) were detected at circadian time 18. Such changes were abolished in Cry-null mice and were independent from oxygen tension, oxygen saturation, or expression of hypoxia-inducible factor 2 alpha, indicating that circadian erythropoietin expression is transcriptionally regulated by CRY1 and CRY2. Reporter gene assays showed that the CLOCK/BMAL1 heterodimer activated an E-box element in the 5' erythropoietin promoter. RNAscope® in situ hybridization confirmed the presence of Bmal1 in erythropoietin-producing cells of the kidney. In Cry-null mice, a significantly reduced number of reticulocytes was found while erythrocyte numbers and hematocrit were unchanged. Thus, circadian erythropoietin regulation in the normoxic adult murine kidney is transcriptionally controlled by master circadian activators CLOCK/BMAL1, and repressors CRY1/CRY2. These findings may have implications for kidney physiology and disease, laboratory diagnostics, and anemia therapy

    The mycorrhizal tragedy of the commons

    Get PDF
    Trees receive growth-limiting nitrogen from their ectomycorrhizal symbionts, but supplying the fungi with carbon can also cause nitrogen immobilization, which hampers tree growth. We present results from field and greenhouse experiments combined with mathematical modelling, showing that these are not conflicting outcomes. Mycorrhizal networks connect multiple trees, and we modulated C provision by strangling subsets of Pinus sylvestris trees, assuming that carbon supply to fungi was reduced proportionally to the strangled fraction. We conclude that trees gain additional nitrogen at the expense of their neighbours by supplying more carbon to the fungi. But this additional carbon supply aggravates nitrogen limitation via immobilization of the shared fungal biomass. We illustrate the evolutionary underpinnings of this situation by drawing on the analogous tragedy of the commons, where the shared mycorrhizal network is the commons, and explain how rising atmospheric CO2 may lead to greater nitrogen immobilization in the future
    corecore