801 research outputs found

    Advanced Silicon-on-Insulator: Crystalline Silicon on Atomic Layer Deposited Beryllium Oxide

    Get PDF
    Silicon-on-insulator (SOI) technology improves the performance of devices by reducing parasitic capacitance. Devices based on SOI or silicon-on-sapphire technology are primarily used in high-performance radio frequency (RF) and radiation sensitive applications as well as for reducing the short channel effects in microelectronic devices. Despite their advantages, the high substrate cost and overheating problems associated with complexities in substrate fabrication as well as the low thermal conductivity of silicon oxide prevent broad applications of this technology. To overcome these challenges, we describe a new approach of using beryllium oxide (BeO). The use of atomic layer deposition (ALD) for producing this material results in lowering the SOI wafer production cost. Furthermore, the use of BeO exhibiting a high thermal conductivity might minimize the self-heating issues. We show that crystalline Si can be grown on ALD BeO and the resultant devices exhibit potential for use in advanced SOI technology applications

    Optimization of distyryl-Bodipy chromophores for efficient panchromatic sensitization in dye sensitized solar cells

    Get PDF
    Cataloged from PDF version of article.Versatility of Bodipy (4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene) dyes was further expanded in recent dye-sensitized solar cell applications. Here we report a series of derivatives designed to address earlier problems in Bodipy sensitized solar cells. In the best case example, an overall efficiency of a modest 2.46% was achieved, but panchromatic nature of the dyes is quite impressive. This is the best reported efficiency in liquid electrolyte solar cells with Bodipy dyes as photosensitizers

    MuSR method and tomographic probability representation of spin states

    Full text link
    Muon spin rotation/relaxation/resonance (MuSR) technique for studying matter structures is considered by means of a recently introduced probability representation of quantum spin states. A relation between experimental MuSR histograms and muon spin tomograms is established. Time evolution of muonium, anomalous muonium, and a muonium-like system is studied in the tomographic representation. Entanglement phenomenon of a bipartite muon-electron system is investigated via tomographic analogues of Bell number and positive partial transpose (PPT) criterion. Reconstruction of the muon-electron spin state as well as the total spin tomography of composed system is discussed.Comment: 20 pages, 4 figures, LaTeX, submitted to Journal of Russian Laser Researc

    Section Extension from Hyperbolic Geometry of Punctured Disk and Holomorphic Family of Flat Bundles

    Full text link
    The construction of sections of bundles with prescribed jet values plays a fundamental role in problems of algebraic and complex geometry. When the jet values are prescribed on a positive dimensional subvariety, it is handled by theorems of Ohsawa-Takegoshi type which give extension of line bundle valued square-integrable top-degree holomorphic forms from the fiber at the origin of a family of complex manifolds over the open unit 1-disk when the curvature of the metric of line bundle is semipositive. We prove here an extension result when the curvature of the line bundle is only semipositive on each fiber with negativity on the total space assumed bounded from below and the connection of the metric locally bounded, if a square-integrable extension is known to be possible over a double point at the origin. It is a Hensel-lemma-type result analogous to Artin's application of the generalized implicit function theorem to the theory of obstruction in deformation theory. The motivation is the need in the abundance conjecture to construct pluricanonical sections from flatly twisted pluricanonical sections. We also give here a new approach to the original theorem of Ohsawa-Takegoshi by using the hyperbolic geometry of the punctured open unit 1-disk to reduce the original theorem of Ohsawa-Takegoshi to a simple application of the standard method of constructing holomorphic functions by solving the d-bar equation with cut-off functions and additional blowup weight functions

    A stochastic model for heart rate fluctuations

    Full text link
    Normal human heart rate shows complex fluctuations in time, which is natural, since heart rate is controlled by a large number of different feedback control loops. These unpredictable fluctuations have been shown to display fractal dynamics, long-term correlations, and 1/f noise. These characterizations are statistical and they have been widely studied and used, but much less is known about the detailed time evolution (dynamics) of the heart rate control mechanism. Here we show that a simple one-dimensional Langevin-type stochastic difference equation can accurately model the heart rate fluctuations in a time scale from minutes to hours. The model consists of a deterministic nonlinear part and a stochastic part typical to Gaussian noise, and both parts can be directly determined from the measured heart rate data. Studies of 27 healthy subjects reveal that in most cases the deterministic part has a form typically seen in bistable systems: there are two stable fixed points and one unstable one.Comment: 8 pages in PDF, Revtex style. Added more dat
    • 

    corecore