1,575 research outputs found

    Effect of quantum confinement on exciton-phonon interactions

    Get PDF
    We investigate the homogeneous linewidth of localized type-I excitons in type-II GaAs/AlAs superlattices. These localizing centers represent the intermediate case between quasi-two-dimensional (Q2D) and quasi-zero-dimensional localizations. The temperature dependence of the homogeneous linewidth is obtained with high precision from micro-photoluminescence spectra. We confirm the reduced interaction of the excitons with their environment with decreasing dimensionality except for the coupling to LO-phonons. The low-temperature limit for the linewidth of these localized excitons is five times smaller than that of Q2D excitons. The coefficient of exciton-acoustic-phonon interaction is 5 ~ 6 times smaller than that of Q2D excitons. An enhancement of the average exciton-LO-phonon interaction by localization is found in our sample. But this interaction is very sensitive to the detailed structure of the localizing centers.Comment: 6 pages, 4 figure

    EL PUERTO ENGALANADA PARA RECIBIR AL REY [Material gráfico]

    Get PDF
    Copia digital. Madrid : Ministerio de Educación, Cultura y Deporte. Subdirección General de Coordinación Bibliotecaria, 201

    Theoretical study of finite temperature spectroscopy in van der Waals clusters. I. Probing phase changes in CaAr_n

    Full text link
    The photoabsorption spectra of calcium-doped argon clusters CaAr_n are investigated at thermal equilibrium using a variety of theoretical and numerical tools. The influence of temperature on the absorption spectra is estimated using the quantum superposition method for a variety of cluster sizes in the range 6<=n<=146. At the harmonic level of approximation, the absorption intensity is calculated through an extension of the Gaussian theory by Wadi and Pollak [J. Chem. Phys. vol 110, 11890 (1999)]. This theory is tested on simple, few-atom systems in both the classical and quantum regimes for which highly accurate Monte Carlo data can be obtained. By incorporating quantum anharmonic corrections to the partition functions and respective weights of the isomers, we show that the superposition method can correctly describe the finite-temperature spectroscopic properties of CaAr_n systems. The use of the absorption spectrum as a possible probe of isomerization or phase changes in the argon cluster is discussed at the light of finite-size effects.Comment: 17 pages, 9 figure

    Multiband theory of multi-exciton complexes in self-assembled quantum dots

    Full text link
    We report on a multiband microscopic theory of many-exciton complexes in self-assembled quantum dots. The single particle states are obtained by three methods: single-band effective-mass approximation, the multiband kâ‹…pk\cdot p method, and the tight-binding method. The electronic structure calculations are coupled with strain calculations via Bir-Pikus Hamiltonian. The many-body wave functions of NN electrons and NN valence holes are expanded in the basis of Slater determinants. The Coulomb matrix elements are evaluated using statically screened interaction for the three different sets of single particle states and the correlated NN-exciton states are obtained by the configuration interaction method. The theory is applied to the excitonic recombination spectrum in InAs/GaAs self-assembled quantum dots. The results of the single-band effective-mass approximation are successfully compared with those obtained by using the of kâ‹…pk\cdot p and tight-binding methods.Comment: 10 pages, 8 figure

    Ultrafast Demagnetization of Iron Induced by Optical versus Terahertz Pulses

    Get PDF
    We study ultrafast magnetization quenching of ferromagnetic iron following excitation by an optical versus a terahertz pump pulse. While the optical pump (photon energy of 3.1 eV) induces a strongly nonthermal electron distribution, terahertz excitation (4.1 meV) results in a quasithermal perturbation of the electron population. The pump-induced spin and electron dynamics are interrogated by the magneto-optic Kerr effect (MOKE). A deconvolution procedure allows us to push the time resolution down to 130 fs, even though the driving terahertz pulse is about 500 fs long. Remarkably, the MOKE signals exhibit an almost identical time evolution for both optical and terahertz pump pulses, despite the 3 orders of magnitude different number of excited electrons. We are able to quantitatively explain our results using a nonthermal model based on quasielastic spin-flip scattering. It shows that, in the small-perturbation limit, the rate of demagnetization of a metallic ferromagnet is proportional to the excess energy of the electrons, independent of the precise shape of their distribution. Our results reveal that, for simple metallic ferromagnets, the dynamics of ultrafast demagnetization and of the closely related terahertz spin transport do not depend on the pump photon energy

    Single and vertically coupled type II quantum dots in a perpendicular magnetic field: exciton groundstate properties

    Full text link
    The properties of an exciton in a type II quantum dot are studied under the influence of a perpendicular applied magnetic field. The dot is modelled by a quantum disk with radius RR, thickness dd and the electron is confined in the disk, whereas the hole is located in the barrier. The exciton energy and wavefunctions are calculated using a Hartree-Fock mesh method. We distinguish two different regimes, namely d<<2Rd<<2R (the hole is located at the radial boundary of the disk) and d>>2Rd>>2R (the hole is located above and below the disk), for which angular momentum (l)(l) transitions are predicted with increasing magnetic field. We also considered a system of two vertically coupled dots where now an extra parameter is introduced, namely the interdot distance dzd_{z}. For each lhl_{h} and for a sufficient large magnetic field, the ground state becomes spontaneous symmetry broken in which the electron and the hole move towards one of the dots. This transition is induced by the Coulomb interaction and leads to a magnetic field induced dipole moment. No such symmetry broken ground states are found for a single dot (and for three vertically coupled symmetric quantum disks). For a system of two vertically coupled truncated cones, which is asymmetric from the start, we still find angular momentum transitions. For a symmetric system of three vertically coupled quantum disks, the system resembles for small dzd_{z} the pillar-like regime of a single dot, where the hole tends to stay at the radial boundary, which induces angular momentum transitions with increasing magnetic field. For larger dzd_{z} the hole can sit between the disks and the lh=0l_{h}=0 state remains the groundstate for the whole BB-region.Comment: 11 pages, 16 figure

    Validation of Dual Membrane Treatment for Indirect Potable Reuse

    Get PDF
    The Western Australia's Premier's Collaborative Research Program (PCRP) project 'Characterising Treated Wastewater for Drinking Purposes Following Reverse Osmosis Treatment' commenced in October 2005, to determine the potential risks of replenishing drinking water aquifers with MF/RO treated secondary wastewater from Perth?s wastewater treatment plants. A brief report on the project won the Michael Flynn Award for the best poster paper at Ozwater 10. The results included those published in Water, February 2010, by Rodriguez et al, entitled Efficiency of RO for removal of Chemical Contaminants. Consequently, this version has been drafted to cover the other aspects of the study, principally the identification of suitable indicators which could be used to validate treatment performance
    • …
    corecore