91,199 research outputs found
Tetrisation of triangular meshes and its application in shape blending
The As-Rigid-As-Possible (ARAP) shape deformation framework is a versatile
technique for morphing, surface modelling, and mesh editing. We discuss an
improvement of the ARAP framework in a few aspects: 1. Given a triangular mesh
in 3D space, we introduce a method to associate a tetrahedral structure, which
encodes the geometry of the original mesh. 2. We use a Lie algebra based method
to interpolate local transformation, which provides better handling of rotation
with large angle. 3. We propose a new error function to compile local
transformations into a global piecewise linear map, which is rotation invariant
and easy to minimise. We implemented a shape blender based on our algorithm and
its MIT licensed source code is available online
An X-ray and radio study of the cluster A 2717
We present an X-ray, radio and optical study of the cluster A 2717. The central D galaxy is associated with aWide- Angled-Tailed (WAT) radio source. A Rosat PSPC observation of the cluster shows that the cluster has a well constrained temperature of 1.9+0.3 −0.2 × 107 K. The pressure of the intracluster medium was found to be comparable to the mininum pressure of the radio source suggesting that the tails may in fact be in equipartition with the surrounding hot gas
An IT approach to cardiovascular care based on primary care
We describe a unique telemedicine approach to cardiovascular care, based in primary care, which combines store and forward with real time video. Patients presenting to the family practitioner (GP) with chest pain or symptoms indicative of cardiac disease are assessed within the health centre by exercise test ECG. The report, together with other clinical information is forwarded as an electronic referral to the cardiologist. Suitable candidates for angiography have an initial teleconsultation by video-conferencing, in which not only may the patient, GP and cardiologist discuss the diagnosis and forthcoming procedures in hospital, but also can undertake management of the patient, such as review of medication and life style. Follow-up consultations may be conducted by further tele-clinics. We also show how re-engineering the process has the potential to eliminate 75 of outpatient appointment
A disk-shaped domain integral method for the computation of stress intensity factors using tetrahedral meshes
A novel domain integral approach is introduced for the accurate computation of pointwise J-integral and stress intensity factors (SIFs) of 3D planar cracks using tetrahedral elements. This method is efficient and easy to implement, and does not require a structured mesh around the crack front. The method relies on the construction of virtual disk-shaped integral domains at points along the crack front, and the computation of domain integrals using a series of virtual triangular and line elements. The accuracy of the numerical results computed for through-the-thickness, penny-shaped, and elliptical crack configurations has been validated by using the available analytical formulations. The average error of computed SIFs remains below 1% for fine meshes, and 2–3% for coarse ones. The results of an extensive parametric study suggest that there exists an optimum mesh-dependent domain radius at which the computed SIFs are the most accurate. Furthermore, the results provide evidence that tetrahedral elements are efficient, reliable and robust instruments for accurate linear elastic fracture mechanics calculations
Anatomy, morphology and evolution of the patella in squamate lizards and tuatara (Sphenodon punctatus)
The patella (kneecap) is the largest and best-known of the sesamoid bones, postulated to confer biomechanical advantages including increasing joint leverage and reinforcing the tendon against compression. It has evolved several times independently in amniotes, but despite apparently widespread occurrence in lizards, the patella remains poorly characterised in this group and is, as yet, completely undescribed in their nearest extant relative Sphenodon (Rhynchocephalia). Through radiography, osteological and fossil studies we examined patellar presence in diverse lizard and lepidosauromorph taxa, and using computed tomography, dissection and histology we investigated in greater depth the anatomy and morphology of the patella in 16 lizard species and 19 Sphenodon specimens. We have found the first unambiguous evidence of a mineralised patella in Sphenodon, which appears similar to the patella of lizards and shares several gross and microscopic anatomical features. Although there may be a common mature morphology, the squamate patella exhibits a great deal of variability in development (whether from a cartilage anlage or not, and in the number of mineralised centres) and composition (bone, mineralised cartilage or fibrotendinous tissue). Unlike in mammals and birds, the patella in certain lizards and Sphenodon appears to be a polymorphic trait. We have also explored the evolution of the patella through ancestral state reconstruction, finding that the patella is ancestral for lizards and possibly Lepidosauria as a whole. Clear evidence of the patella in rhynchocephalian or stem lepidosaurian fossil taxa would clarify the evolutionary origin(s) of the patella, but due to the small size of this bone and the opportunity for degradation or loss we could not definitively conclude presence or absence in the fossils examined. The pattern of evolution in lepidosaurs is unclear but our data suggest that the emergence of this sesamoid may be related to the evolution of secondary ossification centres and/or changes in knee joint conformation, where enhancement of extensor muscle leverage would be more beneficial.Sophie Regnault, Marc E. H. Jones, Andrew A. Pitsillides, John R. Hutchinso
Approximation algorithms for hard variants of the stable marriage and hospitals/residents problems
When ties and incomplete preference lists are permitted in the Stable Marriage and Hospitals/Residents problems, stable matchings can have different sizes. The problem of finding a maximum cardinality stable matching in this context is known to be NP-hard, even under very severe restrictions on the number, size and position of ties. In this paper, we describe polynomial-time 5/3-approximation algorithms for variants of these problems in which ties are on one side only and at the end of the preference lists. The particular variant is motivated by important applications in large scale centralised matching schemes
K-orbit closures on G/B as universal degeneracy loci for flagged vector bundles with symmetric or skew-symmetric bilinear form
We use equivariant localization and divided difference operators to determine
formulas for the torus-equivariant fundamental cohomology classes of -orbit
closures on the flag variety , where G = GL(n,\C), and where is one
of the symmetric subgroups O(n,\C) or Sp(n,\C). We realize these orbit
closures as universal degeneracy loci for a vector bundle over a variety
equipped with a single flag of subbundles and a nondegenerate symmetric or
skew-symmetric bilinear form taking values in the trivial bundle. We describe
how our equivariant formulas can be interpreted as giving formulas for the
classes of such loci in terms of the Chern classes of the various bundles.Comment: Minor revisions and corrections suggested by referees. Final version,
to appear in Transformation Group
Rank Maximal Matchings -- Structure and Algorithms
Let G = (A U P, E) be a bipartite graph where A denotes a set of agents, P
denotes a set of posts and ranks on the edges denote preferences of the agents
over posts. A matching M in G is rank-maximal if it matches the maximum number
of applicants to their top-rank post, subject to this, the maximum number of
applicants to their second rank post and so on.
In this paper, we develop a switching graph characterization of rank-maximal
matchings, which is a useful tool that encodes all rank-maximal matchings in an
instance. The characterization leads to simple and efficient algorithms for
several interesting problems. In particular, we give an efficient algorithm to
compute the set of rank-maximal pairs in an instance. We show that the problem
of counting the number of rank-maximal matchings is #P-Complete and also give
an FPRAS for the problem. Finally, we consider the problem of deciding whether
a rank-maximal matching is popular among all the rank-maximal matchings in a
given instance, and give an efficient algorithm for the problem
- …
