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Abstract

A novel domain integral approach is introduced for the accurate computation of pointwise J-

integral and stress intensity factors (SIFs) of 3D planar cracks using tetrahedral elements. This

method is efficient and easy to implement, and does not require a structured mesh around the

crack front. The method relies on the construction of virtual disk-shaped integral domains at

points along the crack front, and the computation of domain integrals using a series of virtual

triangular elements. The accuracy of the numerical results computed for through-the-thickness,

penny-shaped, and elliptical crack configurations has been validated by using the available ana-

lytical formulations. The average error of computed SIFs remains below 1% for fine meshes, and

2 − 3% for coarse ones. The results of an extensive parametric study suggest that there exists an

optimum mesh-dependent domain radius at which the computed SIFs are the most accurate. Fur-

thermore, the results provide evidence that tetrahedral elements are efficient, reliable and robust

instruments for accurate linear elastic fracture mechanics calculations.
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1. Introduction

Analyzing the mechanical effects of cracks in bodies has attracted great attention in a variety

of scientific and engineering fields, including material science, structural engineering, and oil and

gas reservoir engineering. A major step in analyzing cracked bodies is the accurate computation of

fracture mechanics parameters such as the J-integral and intensity factors (SIFs). It is well known

that the SIFs characterize the stress state adjacent to the crack in the context of linear elastic

fracture mechanics (LEFM), and therefore their accurate determination is of great importance.

SIFs can be calculated analytically or experimentally only for a few geometrical configurations

and boundary conditions, and the use of numerical techniques such as the finite element (FE) and

the boundary element (BE) method is required for more complicated crack problems. Unlike the

FE method, which utilizes discretization of the problem domain, the BE method does not require

the region outside of the crack to be meshed. However, the underlying theory of the BE method

is much more difficult, and in part for this reason, the use of the FE method in fracture mechanics

has gained great popularity. It is generally known that the finite element method can be directly

applied to solve any solid mechanics boundary value problem. However, a major difficulty in the

use of FE to analyze crack problems lies in capturing the high stress gradients near the crack, and

accurately computing the singular stress fields.

The use of FE method to solve fracture mechanics problems attracted great attention in early

1970s when poor results of the FE solutions of crack problems by conventional elements were

identified. This was due to the fact that conventional finite elements employ polynomials to inter-

polate field variables in the domain, and therefore they are not able to reproduce the singular crack

tip fields. Significant development of the FE analysis of crack problems was made by Barsoum

(1976) and Henshell and Shaw (1975) who independently showed that the singularity at the crack

tip can be properly modeled by placing the mid-side node near the crack tip at the quarter-point

position. This shift simply results in a nonlinear mapping between the natural and local coordinate

systems in a way that a singular strain at the crack tip occurs, and an inverse square root singu-
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larity is modeled throughout the element. The element types collapsed quarter-point hexahedrals,

quarter-point pentahedrals, and quarter-point bricks have been mostly employed in the last three

decades for modeling 3D fractures. The use of these types of elements relies upon the generation

of a fully structured mesh around the 3D crack front, which is a difficult and cumbersome task

for complex crack configurations. Quarter-point tetrahedral elements can also be used to model

the singular fields in the vicinity of crack front (Rajaram et al., 2000; Paluszny and Zimmerman,

2011). Unlike the other types of quarter-point elements, quarter-point tetrahedrals can be used in a

fully unstructured and arbitrary mesh layout, such as are required to mesh dense three-dimensional

fracture patterns.

In terms of meshing schemes used in analyzing crack bodies and simulating fracture growth

in crack propagation tools, there have mainly been three methodologies. The first employs pure

hexahedral elements to discretize the whole domain. This methodology has been widely accepted

and used for simple geometries. Hexahedral elements are advantageous because: (i) collapsed

quarter-point hexahedrals have proven to accurately reproduce the singular fields near the crack,

and (ii) straightforward algorithms such as domain integral methods are available to extract the J-

integral and stress intensity factors from the FE solutions by hexahedrals. However, the approach

requires a fully structured mesh, not only in the neighborhood of the crack front, but also in regions

remote from cracks. It is known that meshing an arbitrary crack geometry with hexahedrals is very

difficult and cumbersome, and for complex crack and body configurations it may not be feasible.

The second methodology employs a combination of hexahedral and tetrahedral elements. These

combined methodologies are developed to utilize the good performance of collapsed quarter-point

hexahedral finite elements as well as the efficiency of the tetrahedral elements to mesh complicated

geometries. One approach is to discretize the neighborhood region of the crack by hexahedrals,

while tetrahedrals are used to generate unstructured mesh in the remote regions (Bremberg and

Dhondt, 2008, 2009; Bremberg and Faleskog, 2015). The major drawback is that tie constraints

must be used to satisfy the compatibility and equilibrium conditions at the surfaces where tetrahe-
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drals connect to hexahedrals. In the other approach one analysis is performed to model the global

structure by tetrahedrals, and then by mapping the FE-solution, a sub-model is generated to solve

for the near crack fields using hexahedrals (Schöllmann et al., 2003). This approach is also com-

putationally expensive, as it requires performing two FE model analyzes, and also, complications

may arise in sub-modeling procedures. The third methodology is to use pure tetrahedrals in an

unstructured and arbitrary mesh to model the entire domain. This methodology has been suc-

cessfully applied in the context of crack propagation (Paluszny and Zimmerman, 2011) as well as

fragmentation (Paluszny et al., 2013). It is well known that the meshing procedures by tetrahedrals

are much simpler, and these elements are best suited to mesh arbitrary domains and complicated

geometries automatically. Additionally, adaptive meshing procedures can be applied to discretize

the domain efficiently. However, the applicability, efficiency, and accuracy of tetrahedral elements

for modeling crack singular fields have not been well investigated in the literature.

Existing methods to extract J-integrals and SIFs using tetrahedral elements are complex and

suffer from oscillations (Červenka and Saouma, 1997; Rajaram et al., 2000; Paluszny and Zim-

merman, 2011), while others require very fine meshes near the crack front, rely on complicated

numerical procedures, and are applied on arbitrary domain shapes and sizes (Okada et al., 2008;

Daimon and Okada, 2014). These methods mainly rely on volumetric actual (Rajaram et al., 2000;

Daimon and Okada, 2014) and virtual (Červenka and Saouma, 1997; Paluszny and Zimmerman,

2011) domains to compute the SIFs from the evaluated J- and interaction integrals. The present

paper proposes an efficient, accurate and straightforward disk-shaped domain integral method to

extract J-integral and SIFs from unstructured meshes. This method does not require a very fine

mesh near the crack front, and no oscillation is seen in the computed pointwise fracture parameters.

2. Volumetric domain integral method

Techniques for SIF computation from FE results fall into two categories. (i) Direct approaches,

such as stress/displacement extrapolation and correlation, which are based on the correlation be-
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tween the FE stress/displacement distribution around the crack and the analytical field expressions.

Displacement extrapolation method proposed by Chan et al. (1970), displacement correlation ap-

proach suggested by Barsoum (1976) and further developed by Shih et al. (1976); Ingraffea and

Manu (1980), as well as recently developed least-square based finite element over-deterministic

method (FEOD) by Ayatollahi and Nejati (2011a,b) fall into this category. (ii) Energy approaches

which are based on the computation of energy released rate G (Irwin, 1956). The SIFs are then

computed indirectly by using the relationships between G and the SIFs. In the context of LEFM,

three main methods have been proposed to compute G: 1) the J-integral: J, which is equivalent

to G for elastic materials, is defined as a contour integral around the crack tip (Cherepanov, 1967;

Rice, 1968; Budiansky and Rice, 1973). DeLorenzi (1982) and Li et al. (1985) then transformed

this contour integral into an equivalent domain integral. 2) Virtual crack extension: VCE was

suggested by Parks (1974), and computes the rate of the change of the total potential energy of

the system, for a small virtual extension of the crack. This technique is mathematically equivalent

to the domain version of J-integral, and can be interpreted as a virtual crack extension technique

(DeLorenzi, 1982; Shih et al., 1986; Banks-Sills and Sherman, 1992; Banks-Sills, 2010). 3) Vir-

tual crack closure technique: VCCT was originally proposed by Rybicki and Kanninen (1977) and

uses Irwin’s crack closure integral to compute the SIFs. Recently a strain energy based approach

has been suggested for the computation of the SIFs of cracks and V-shaped notches from coarse

meshes (Lazzarin et al., 2008, 2010; Treifi and Oyadiji, 2013). This method averages strain energy

density over a control volume near the crack and notch tips, and uses close form relations to obtain

SIFs from the computed averaged strain energy density. This approach is more suitable for pure

modes as the decoupling process in mixed-mode configurations is not straightforward.

The J-integral has been the most used crack tip parameter in fracture mechanics, and plays

an important role in linear and nonlinear fracture mechanics. Under pure modes I, II or III, the

extraction of SIFs from the J-integral is straightforward. However, a technique is required to sepa-

rate SIFs due to different deformation modes in a mixed-mode crack deformation, as the J-integral
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gives the total energy release rate. There have been two main strategies for separating the SIFs.

The first strategy uses decomposed crack tip fields to compute separate energy release rates for

different deformation modes (Bui, 1983). This approach has been frequently used along with the

domain representation of the J-integral for the computation of SIFs (Raju and Shivakumar, 1990;

Shivakumar and Raju, 1992; Nikishkov and Atluri, 1987b; Huber et al., 1993). However, decom-

posing the crack tip field into symmetric and antisymmetric fields introduces error, and is mainly

applicable to a mesh that is symmetric with respect to the crack face. The second method is called

the interaction integral method, which was initially developed for 2D cracks by Chen and Shield

(1977) and Yau et al. (1980), and then extended to 3D crack configurations by Nakamura and Parks

(1989). In this method the contribution of the interaction of two different stress fields, a real field

and an auxiliary field, to the J-integral defines a new integral which is able to compute separate

SIFs. Interaction integral methods have emerged as the most accurate and readily implementable

approach to extract SIFs in mixed-mode crack deformation. This section discusses the available

domain integral approaches of computing J-integral and interaction-integral from FE results.

2.1. J-integral

Let us consider a two-dimensional elastic body containing a crack which lies in the direction

of x1 as shown in Fig. 1. Restricting the crack to advance along the x1 axis, the energy release rate

per unit crack advance, G, is equivalent to the J-integral (Rice, 1968; Shih et al., 1986):

G = J = lim
Γ→0

∫
Γ

(
Wδ1i − σi j

∂u j

∂x1

)
nidΓ = lim

Γ→0

∫
Γ

P1inidΓ (1)

where W =
∫ ε

0
σi jεi jdε is the strain energy density, σi j, εi j and ui are the Cartesian components

of stress tensor, strain tensor and displacement vector in the local x1x2 coordinate system, respec-

tively, δi j is the Kronecker delta, and ni is the unit vector normal to Γ which is an arbitrary path

beginning at the bottom crack face and ending on the top face. Γ → 0 indicates that the contour

Γ is shrinking onto the crack tip. The bracketed quantity is in fact the x1 component of Eshelby’s
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energy-momentum tensor P1i = Wδ1i − σi j∂u j/∂x1 (Eshelby, 1970). In the absence of body force

and thermal strains, the energy density W does not depend explicitly on the system coordinates,

and the divergence of P1i vanishes (P1i,i = 0). Assuming that the vector m is normal to a closed

contour Γc = Γ0 + Γ+ + Γ− − Γ such that m = −n on Γ, m = n on Γ0, m2 = −1 on Γ+ , and

m2 = 1 on Γ−, then according to the divergence theorem the integral in Eq. (1) vanishes for Γc,∫
Γc

P1imidΓ = 0, and the J-integral can be expressed as

J =

∫
Γ0

(
Wδ1i − σi j

∂u j

∂x1

)
nidΓ −

∫
Γ++Γ−

σ2 j
∂u j

∂x1
m2dΓ (2)

Eq. (2) indicates that in the absence of body force and thermal strains, the J-integral is path-

independent as long as the contribution of crack face tractions is considered. In fact, the J-integral

does not depend on a limiting process in which the crack tip contour Γ is shrunk onto the crack tip,

and can be accurately extracted from contours remote from the crack tip. This formulation allows

one to use contours remote from the crack tip, which results in the computation of more accurate

values for J-integral. However, the evaluation of counter integrals in Eq. (2) is cumbersome in

the FE scheme as the contour is preferably selected to pass through Gauss points where stresses

are expected to be the most accurate. To circumvent this difficulty, the line-integral form of J can

be recast as a domain integral (DeLorenzi, 1982; Li et al., 1985). Let us assume q is a sufficiently

smooth scalar function in the region enclosed by Γc = Γ0 + Γ+ + Γ− − Γ, holding unity on Γ and

vanishing on Γ0. Eq. (1) can be rewritten as

J =

∫
A

(
σi j

∂u j

∂x1
−Wδ1i

) ∂q
∂xi

dA −
∫

Γ++Γ−

σ2 j
∂u j

∂x1
m2qdΓ (3)

where the closed contour integral is transformed to an equivalent domain integral by applying

the divergence theorem and making use of the relation (P1i,i = 0). Thanks to the scalar function q,

the contour integrals in Eq. (2) is now transformed to an area integral over A together with contour

integrals over the crack faces. The process of recasting the contour integral into an area integral
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Figure 1: Contour and domain integrals for the evaluation of J-integral in 2D cracks.

is advantageous for numerical purposes, as a domain integral is compatible with the finite element

formulations and can be readily implemented in FE codes. Also as the integral is evaluated over a

domain of elements surrounding the crack, errors in local solution parameters have less effect on

the evaluated quantity of J-integral. It has been shown that the domain version of the J-integral

has superior path independence than does the line integral, yielding much more accurate results

for the crack field parameters (Nikishkov and Atluri, 1987a; Raju and Shivakumar, 1990). The

domain integral method corresponds to a continuum formulation of the finite-element virtual crack

extension technique (DeLorenzi, 1982). One can refer to Moran and Shih (1987a,b) for a general

discussion on crack-tip contour integrals and their associated domain integral representation.

For a 3D crack configuration, the J-integral generalizes to a surface integral where two def-

initions of J-integral have been proposed: (i) the average value which gives the average of the

energy release rate per unit crack advance at the whole crack front; and (ii) the pointwise value

which gives the energy release rate due the extension of the crack front locally at a given point

on the crack front (Budiansky and Rice, 1973; DeLorenzi, 1982; Li et al., 1985). The pointwise

J-integral reveals the variation of the strength of the energy release rate along the crack front, and

can be used to compute the SIFs at any point on the crack front. Consider point s on the curved

crack front of a 3D planar crack. A local orthogonal coordinate system is defined at point s such

that the local x2 axis is perpendicular to the plane of the crack, and the x1, and x3 axes are normal
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and tangent to the crack front, respectively (Fig. 2). The pointwise energy release rate due to the

unit local crack advancement at the point s is given by

J(s) = lim
Ω→0, Lc→0

1
Lc

∫
Ω

P1inidΩ = lim
Γ→0

∫
Γ

P1inidΓ (4)

where Γ is a contour that lies on a plane passing through point s and is perpendicular to the

crack front, Ω is the surface of a tube connecting the top and bottom crack faces, and ni is the unit

vector normal to Ω. Ω → 0 indicates that the surface Ω is shrinking onto the crack front segment

Lc. Although the shape of surface Ω may be arbitrary as it collapses onto the crack front, an

equivalent path independent integral such as Eq. (2) does not exist for 3D cracks. This is because

the two-dimensional plane strain fields are only asymptotically approached at the crack front, and a

general 3D state of stress prevails far from the crack front (Nakamura and Parks, 1989). Therefore,

for the J-integral to capture the effects of plane strain conditions, the surface must be very close

to the crack front. Furthermore, if the surface Ω that is used for the J-integral is too large, then

it is influenced by singular fields from other points of the crack front and not just the position of

interest (Shivakumar and Raju, 1992; Rigby and Aliabadi, 1998). The presence of two limits and

integration over surface make it very cumbersome and error-prone to evaluate the J-integral from

its original definition in Eq. (4). However, two steps can be taken to recast the integral into a more

compatible formulation within the FE context. In the first step it is assumed that J(s) varies slowly

over a small segment of the crack front Lc which has undergone a crack advancement of δl(s), and

reformulate Eq. (4) as

J(s) =
1∫

L f
δl(s)ds

lim
Ω→0

∫
Ω

P1iδl(s)nidΩ (5)

where the crack advance δl(s) is continuously differentiable arbitrary function that equals zero

at the two ends of Lc (Fig. 2). The second step is to recast the surface integral into a domain integral

version. Consider a tubular domain V surrounding the crack segment Lc, which is enclosed by the
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Figure 2: The tubular domain V surrounding the crack segment Lc, which is enclosed by the closed
manifold Ωc = Ω + Ω0 + ΩL + ΩR + Ω+ + Ω− where Ω shrinks onto the crack front.

closed manifold Ωc = Ω + Ω0 + ΩL + ΩR + Ω+ + Ω− with the outward-point normal vector m

where m = −n on Ω, m = n on Ω0, m2 = −1 on Ω+ and m2 = 1 on Ω− (see Fig. 2). These

surfaces are formed by translating the contour Γ, Γ0, Γ+ and Γ− in Fig. 1 along the curved crack

front segment Lc. Now introduce an arbitrary continuously differentiable, class C1, scalar function

q in the neighborhood of V , which is equal to δl(s) on the surface Ω, and zero on Ω0, ΩR and

ΩL. Applying the divergence theorem, and knowing that in the absence of thermal strains and

body forces, and when the equilibrium conditions are satisfied throughout the whole domain V

(∂σi j/∂x j = 0), P1i is divergence free (∂P1i/∂xi = 0), Eq. (5) is reformulated to

J(s) =
1∫

Lc
q(s)ds

[ ∫
V

(
σi j

∂u j

∂x1
−Wδ1i

) ∂q
∂xi

dV −
∫

Ω++Ω−

σ2 j
∂u j

∂x1
m2qdΩ

]
(6)

By separately advancing various small segments of the crack front, the pointwise J-integral can

be computed along the crack front (Shih et al., 1986; Nikishkov and Atluri, 1987b; Shivakumar

and Raju, 1992). Volume integration is performed over a volumetric domain around the crack

front; a special concentric mesh is required to define a structured domain around the crack front.
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2.2. Interaction integral to extract stress intensity factors

The SIFs KI, KII, and KIII cannot be calculated separately from the J-integral. The interaction

integral, however, is able to extract the separated SIFs from the FE results. Chen and Shield (1977)

and Yau et al. (1980) introduced this method for 2D cracks, and Nakamura and Parks (1989) ex-

tended it to 3D crack configurations. Interaction integral methods are perhaps the most accurate,

reliable and readily implementable methods to extract SIFs in mixed-mode 2D and 3D crack prob-

lems (Walters et al., 2005; Banks-Sills, 2010; Bremberg and Faleskog, 2015). Consider two states

of equilibrium for the cracked body deformation: (i) an actual state obtained by the FE solution

of the actual boundary value problem (ui, εi j, σi j); and (ii) an auxiliary state given by the known

asymptotic fields which are functions of the SIFs (uaux
i , εaux

i j , σ
aux
i j ). Except at points that are very

close to the intersection point of a crack front with free surfaces, the two-dimensional plane strain

fields are asymptotically approached at the crack front (Nakamura and Parks, 1988, 1989). There-

fore, the first terms of the Williams series expansions for stresses, strains and displacements in 2D

cracks are usually chosen as the auxiliary fields in the vicinity of the crack front (Appendix A).

A linear combination of actual fields (or finite element fields) with auxiliary fields (field expres-

sions as functions of SIFs) constitutes a third, superimposed, equilibrium state. From Eq. (4), the

J-integral for this superimposed equilibrium state is given by

Jsup(s) = lim
Γ→0

∫
Γ

[1
2

(σi j + σaux
i j )(εi j + εaux

i j )δ1i − (σi j + σaux
i j )(

∂u j

∂x1
+
∂uaux

j

∂x1
)
]
nidΓ (7)

Consider Jsup(s) = Jact(s) + Jaux(s) + I(s), where Jact(s) and Jaux(s) are the energy release

rates due to the actual and auxiliary fields, and I(s) is the interaction integral for the two states

of equilibrium. By comparing the energy release rate for the superimposed state with the energy

release rates for the separate actual and auxiliary fields, the interaction integral is formulated as

I(s) = lim
Γ→0

∫
Γ

[
WIδ1i −

(
σi j

∂uaux
j

∂x1
+ σaux

i j
∂u j

∂x1

)]
nidΓ (8)
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where WI = 1/2(εaux
i j σi j + εi jσ

aux
i j ) is the mutual strain density, and as the actual and auxiliary

fields provide two solutions for the same elastic solid with the same constitutive tensor, according

to the reciprocal theorem WI = εaux
i j σi j = εi jσ

aux
i j . In the context of LEFM, the two very important

fracture parameters, namely the energy release rate G, which gives the change in the potential

energy that accompanies an increment of crack extension, and the stress intensity factors KI, KII

and KIII, which characterize the stresses, strains, and displacement near the crack front for different

modes, are uniquely related by (Anderson, 2005)

G = J =
K2

I + K2
II

E′
+

K2
III

2µ
(9)

where E′ = E and E′ = E/(1 − ν2) for plane stress and plane strain conditions, respectively,

and E, ν and µ = E/2(1 + ν) are the Young’s modulus, Poisson’s ratio, and shear modulus of the

material. As plane strain condition prevails very close to the crack front at any point on the crack

front except points very close to the intersection of the crack front and free surfaces (Nakamura

and Parks, 1988, 1989), a plane strain condition must be assumed in order to relate G(s) to the

SIFs. Using Eq. (9) the energy release rate for the superimposed state in terms of SIFs will be

Jsup(s) = Jact(s) + Jaux(s) + I(s) =

(
KI(s) + Kaux

I (s)
)2

+
(
KII(s) + Kaux

II (s)
)2

E′
+

(
KIII(s) + Kaux

III (s)
)2

2µ
(10)

where KI(s), KII(s) and KIII(s) are the SIFs due to the actual state, and Kaux
I (s), Kaux

II (s) and Kaux
III

are the SIFs due to the auxiliary states. The interaction energy integral is then developed in terms

of SIFs as

I(s) =
2
E′

(
KI(s)Kaux

I (s) + KII(s)Kaux
II (s)

)
+

1
µ

KIII(s)Kaux
III (s) (11)

By using following three equilibrium auxiliary states of pure mode I (Kaux
I ,Kaux

II ,Kaux
III ) =

12



  

(1, 0, 0), pure mode II (Kaux
I ,Kaux

II ,Kaux
III ) = (0, 1, 0), and pure mode III (Kaux

I ,Kaux
II ,Kaux

III ) = (0, 0, 1),

three corresponding interaction integral values II(s), III(s) and IIII(s) are obtained from Eq. (8),

and the SIFs are extracted from the following expressions:

KI(s) =
E′

2
II(s), KII(s) =

E′

2
III(s), KIII(s) = µIIII(s) (12)

Equation (8) is not in a form well suited for finite element calculations. The same approach that

was used in Section 2.1 can be used to recast this integral into a domain integral, which is more

compatible with the context of finite elements. Again consider the tubular domain V surrounding

the crack segment Lc, which is enclosed by the closed manifold Ωc, with the outward-point normal

vector m, and also consider the scalar function q as explained in Section 2.1 (Fig. 2). Applying

the divergence theorem, Eq. (8) is reformulated to

I(s) =
1∫

Lc
q(s)ds

[ ∫
V

(
σi j

∂uaux
j

∂x1
+ σaux

i j
∂u j

∂x1
−WIδ1i

)
∂q
∂xi

dV

+

∫
V

(
σi j

∂

∂x1

(∂uaux
j

∂xi
− εaux

i j

)
+
∂σaux

i j

∂xi

∂u j

∂x1

)
qdV

−

∫
Ω++Ω−

σ2 j

∂uaux
j

∂x1
m2qdΩ

]
(13)

Equation (13) is derived for isothermal loading without body forces, assuming that in the ac-

tual state the equilibrium and compatibility conditions are satisfied throughout the entire domain

V (∂σi j/∂x j = 0, ∂u j/∂xi − εi j = 0). For a straight crack front, the 2D plane strain auxiliary fields

also satisfy compatibility and equilibrium equations, and therefore, the second integral in Eq. (13)

vanishes. In the case of curved crack fronts, however, special care must be taken, as Williams

2D plane strain auxiliary fields do not satisfy compatibility (∂uaux
j /∂xi − ε

aux
i j , 0) and equilibrium

(σaux
i j /∂xi , 0) in curvilinear coordinates and the second integral remains non-zero (Nahta and

Moran, 1993; Gosz et al., 1998; Gosz and Moran, 2002). The main difficulty in calculating the
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interaction energy integral from the domain form in Eq. (13) lies in the evaluation of the gradi-

ents and higher order gradients of the auxiliary fields that appear in the second integrand in Eq.

(13). Nahta and Moran (1993); Gosz et al. (1998) presented a method to evaluate this integral by

introducing curvilinear coordinates in the definition of deformation gradients. Kim et al. (2001)

proposed a method to calculate the two-state integral in Eq. (13) through imposing displacement

of the two dimensional asymptotic solutions on the nodes in the finite element model. Both meth-

ods involve the computation of highly accurate values of the coordinates of the integration points

with respect to the curved crack front, which usually require a Newton scheme and an analytical

definition for the local crack front geometry. Walters et al. (2005) proposed another strategy in

which elements with straight edges are used along the crack front. This approach eliminates this

additional integral appearing in the interaction integral formulation for curvilinear coordinates. It

has been demonstrated that it is crucial to maintain this integrand, especially when the local crack

front curvature is high (Gosz et al., 1998; Kim et al., 2001). The third terms in Eq. (13) also

involves the evaluation of surface integrals, which include singular terms. An accurate evaluation

of this integral ensures that it does not contribute numerical error to the SIF results.

The existing volumetric domain integral approaches use Eqs. (6) and (13) to evaluate the J-

integral and interaction integrals, respectively. As they evaluate integrals over tubular domains

built by a set of volumetric elements, a structured mesh is required around the crack front. The

main advantage of these versions of domain integrals is that they can be readily implemented in the

FE codes when a structured mesh is used near the crack front. The main disadvantages of these

forms are: (i) Implementation of these methods on an unstructured mesh is very cumbersome;

(ii) The method requires the crack tip fields to be obtained in a curvilinear coordinate system by

the computation of accurate values of the coordinates of the integration points with respect to

the curved crack front, which usually requires a Newton scheme and an analytical definition for

the local crack front geometry; (iii) The computation of the second integral in Eq. (13) requires

computation of the higher-order gradients of crack tip fields, which is not trivial. The question
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arises as to whether this is the best domain form choice to be used in the case of an unstructured

mesh around the crack front.

3. Disk-shaped domain integral approach

Consider a cracked body under mechanical loading only, in the absence of any body force.

The arbitrarily-shaped planar crack is assumed to lie in a plane described by Xp(X1, X2, X3) = 0

whose crack front is of length L f , as shown in Fig. 3. The crack front is a smooth plane curve

that is described by the position vector X f (s), where 0 ≤ s ≤ L f parameterizes the points along

the crack front. The unit normal vector to the crack surface is constant (Np = ∇Xp/‖∇Xp‖), but

the unit tangent vector to the crack front will be a function of s (T (s) = X′f (s)/‖X′f (s)‖). The unit

normal to the crack front which lies in the crack plane and is in the direction of crack extension is

also a function of s and is defined by N f (s) = Np × T (s). A right-handed orthogonal curvilinear

coordinate system x1x2x3 is constructed in a way that the x3 axis coincide with the curved crack

front. In this coordinate system, x3 = s indicates a plane normal to the crack front, and the local

unit base vectors at the point s along the crack front are b1 = N f (s), b2 = Np, and b3 = T (s).

3.1. J-integral

Assume a virtual crack advance of δl(s) = δ(x3 − s)b1 in the curvilinear coordinate system

x1x2x3. Here δ(x3 − s) is the Dirac delta function, which is zero along the crack front except at the

point s, and gives a pointwise crack extension at the point s on the crack front. Due to this virtual

crack extension, the negative of the change of the potential energy of the body (Π) is equivalent to

the pointwise energy release rate:

−δΠ =

∫ L f

0
G(x3)δ(x3 − s)dx3 = G(s) (14)

Equation (14) implies that the Dirac delta function is a proper choice for the virtual crack

extension in order to evaluate the pointwise energy release rate as the unit crack extension occurs
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Figure 3: Disk-shaped domain for the evaluation of J- and interaction integrals in 3D crack con-
figurations.

at the point s only, remaining elsewhere at its original length. Now consider an arbitrary path Γ

beginning at the bottom crack face and ending on the top face, with ni being its unit normal vector

(Fig. 3). Both contour path Γ and its normal ni lie in the plane x3 = s, which is normal to the

crack front at the point s. The tubular surface Ω is now formed by translating the contour Γ along

the curved crack front segment Lc (Fig. 3). From Eq. (4), the pointwise energy release rate G is

equivalent to the well-known J-integral:

G(s) = J(s) = lim
Γ→0

∫
Γ

P1inidΓ = lim
Ω→0

∫
Ω

P1iniδ(x3 − s)dΩ (15)

where Γ→ 0 and Ω→ 0 indicate that the contour Γ and the surface Ω are shrinking down to the

point x3 = s, and crack segment Lc, respectively. Let us consider a tubular domain V surrounding

the crack segment Lc, which is enclosed by the closed manifold Ωc = Ω + Ω0 + ΩL + ΩR + Ω+ + Ω−

with the outward-point normal vector m where m = −n on Ω, m = n on Ω0, m2 = −1 on Ω+

and m2 = 1 on Ω− (see Fig. 3). These surfaces are formed by translating the enclosed contour

Γc = Γ0 + Γ+ + Γ− − Γ at the plane x3 = s along the curved crack front segment Lc. Let us also
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introduce an arbitrary continuously differentiable scalar function q(x1, x2), which is equal to unity

on Ω, and zero on Ω0. q(x1, x2)δ(x3 − s) is therefore a continuously differentiable scalar function

which is equal to δl(x3) = δ(x3 − s) on Ω, and zero on Ω0. In the absence of thermal strains and

body forces, and when the equilibrium conditions are satisfied throughout the whole domain A

(∂σi j/∂x j = 0), P1i is divergence-free on A (∂P1i/∂xi = 0). Applying the divergence theorem, the

surface integral in Eq. (15) is reformulated to a domain integral as

J(s) =

∫
A

(
σi j

∂u j

∂x1
−Wδ1i

) ∂q
∂xi

dA −
∂

∂x3

∫
A
σ3 j

∂u j

∂x1
qdA −

∫
Γ++Γ−

σ2 j
∂u j

∂x1
m2qdΓ (16)

where A is a disk-shaped area in the plane orthogonal to the crack front at point s, and Γ+ and

Γ− are the contours on the crack faces with m2 = −1 and m2 = 1, respectively. Here the funda-

mental equation that defines derivatives of the delta function (
∫

f (x)δ′(x)dx = −
∫

f ′(x)δ(x)dx)

has been used. As 2D plane strain conditions are approached asymptotically near crack tip field,

the integration area A must be very close to the crack front. It is noteworthy that ∂q/∂x3 = 0 as

q is a function of only x1 and x2. Now consider the following two states of equilibrium super-

imposed on top of each other over the disk A: (a) an equilibrium state generated due to in-plane

loads (ua = {u1, u2, 0}T , εa = {ε11, ε22, ε33, ε12, 0, 0}T , σa = {σ11, σ22, σ33, σ12, 0, 0}T ); (b) an equi-

librium state generated due to anti-plane loads (ub = {0, 0, u3}
T , εb = {0, 0, 0, 0, ε13, ε23}

T , σb =

{0, 0, 0, 0, σ13, σ23}
T ). The actual fields within the area A are obtained by superimposing the states

a and b (see Fig. 4). The state a provokes a mixed-mode I/II crack deformation only, while

the state b can produce mode III deformation only. In fact, neither can state a produce mode

III deformation (KIII = 0 for state a), nor is state b able to generate in-plane crack deformation

(KI = KII = 0 for state b). As a result, the two states are fully decoupled and cannot interact

with each other, and therefore the J-integral of the superimposed state is equivalent to the sum of

the J-integrals obtained from the fields in states a and b separately (J = Ja + Jb). As the second

integral in Eq. (16) vanishes for each of equilibrium states a and b, the J-integral is simplified to
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Figure 4: Decomposition of crack tip fields into state a: fields from in-plane loads, and state b:
fields from anti-plane loads.

J(s) =

∫
A

(
σi j

∂u j

∂x1
−Wδ1i

) ∂q
∂xi

dA −
∫

Γ++Γ−
σ2 j

∂u j

∂x1
m2qdΓ (17)

3.2. Interaction integral to extract SIFs

Again assume a virtual crack advance of δl(s) = δ(x3−s)b1 in the curvilinear coordinate system

x1x2x3, and the arbitrary path Γ with unit normal ni which lies in the plane x3 = s. The tubular

surface Ω is formed by translating the contour Γ along the curved crack front segment Lc (Fig. 3).

From Eq. (8), and by defining P′1i = WIδ1i−(σi j∂uaux
j /∂x1 +σaux

i j ∂u j/∂x1), the pointwise interaction

integral is given by

I(s) = lim
Γ→0

∫
Γ

P′1inidΓ = lim
Ω→0

∫
Ω

P′1iniδ(x3 − s)dΩ (18)

Again consider a tubular domain V as shown in Fig. 3, and the arbitrary continuously differ-

entiable scalar function q(x1, x2) which is equal to unity on Ω, and is zero on Ω0. q(x1, x2)δ(x3 − s)

is therefore a continuously differentiable scalar function which is equal to δl(x3) = δ(x3 − s) on Ω,

and is zero on Ω0. It can be easily shown that (∂P′1i/∂xi = 0) in the whole domain A, since for both

actual and auxiliary fields the equilibrium conditions (∂σi j/∂x j = 0, ∂σaux
i j /∂x j = 0) and compat-
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ibility conditions (∂u j/∂xi − εi j = 0, ∂uaux
j /∂xi − ε

aux
i j = 0) are satisfied. Applying the divergence

theorem, the surface integral in Eq. (18) is reformulated to a domain integral as

I(s) =

∫
A

(
σi j

∂uaux
j

∂x1
+σaux

i j
∂u j

∂x1
−WIδ1i

)
∂q
∂xi

dA−
∂

∂x3

∫
A

(
σ3 j

∂uaux
j

∂x1
+σaux

3 j

∂u j

∂x1

)
qdA−

∫
Γ++Γ−

σ2 j

∂uaux
j

∂x1
m2qdΓ

(19)

where A is the disk-shaped domain in the plane orthogonal to the crack front at point s, and

Γ+ and Γ− are the contours on the crack faces with m2 = −1 and m2 = 1, respectively. Again

consider two following states of equilibrium superimposed on top of each other over the very

small area A: (a) an equilibrium state generated due to in-plane loads (ua = {u1, u2, 0}T , εa =

{ε11, ε22, ε33, ε12, 0, 0}T , σa = {σ11, σ22, σ33, σ12, 0, 0}T ); (b) an equilibrium state generated due to

anti-plane loads (ub = {0, 0, u3}
T , εb = {0, 0, 0, 0, ε13, ε23}

T , σb = {0, 0, 0, 0, σ13, σ23}
T ). The actual

fields within the area A are obtained by superposing the states a and b (see Fig. 4). The state

a produces a mixed-mode I/II crack deformation only, while the state b can produce mode III

deformation only. Consider now the auxiliary fields for mode I as (uaux = {uaux
1 , uaux

2 , 0}T , εaux =

{εaux
11 , ε

aux
22 , ε

aux
33 , ε

aux
12 , 0, 0}

T , σaux = {σaux
11 , σ

aux
22 , σ

aux
33 , σ

aux
12 , 0, 0}

T ). KI can now be computed by sub-

stituting superimposed states and the mode I auxiliary fields in Eq. (19). From the equilibrium

states a and b, only state a contributes to the crack deformation in mode I, and the equilibrium

state b shall be ignored. Considering the auxiliary fields, and equilibrium state a only, the second

integral in Eq. (19) vanishes. The same logic can be applied for formulating the interaction inte-

gral associated with modes II and III to eliminate the second integral in Eq. (19). The interaction

integral formulation in Eq. (19) therefore simplifies to

I(s) =

∫
A

(
σi j

∂uaux
j

∂x1
+ σaux

i j
∂u j

∂x1
−WIδ1i

)
∂q
∂xi

dA −
∫

Γ++Γ−
σ2 j

∂uaux
j

∂x1
m2qdΓ (20)

By using the following three equilibrium auxiliary states of pure mode I (Kaux
I ,Kaux

II ,Kaux
III ) =

(1, 0, 0), pure mode II (Kaux
I ,Kaux

II ,Kaux
III ) = (0, 1, 0), and pure mode III (Kaux

I ,Kaux
II ,Kaux

III ) = (0, 0, 1),
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three corresponding interaction integral values II(s), III(s) and IIII(s) are obtained from Eq. (20),

and the SIFs are extracted from Eq. (12).

3.3. Volumetric vs. disk-shaped domain integrals

New versions of domain integrals for computing J- and interaction integrals in 3D cracks were

developed in Eqs. (17) and (20). These versions are similar to the domain integral formulations

developed for 2D cracks. The main advantage of the volumetric domain integrals is that the domain

can be built by a set of elements around the crack front. As a result, the numerical integration is

readily implemented using the integration points of the elements. This is a major advantage of the

volumetric domain approach, if a structured mesh provides a well-defined tubular region around

the crack front. However, for the case of an unstructured mesh where the domain integral is most

likely to be independent of the mesh structure, the volumetric domain integral may not be the best

option.

The advantages of the disk-shaped domain integrals over the volumetric ones are as follows:

(1) They can be readily implemented for unstructured meshes. (2) They directly use the orig-

inal definition of the pointwise J integral and interaction integrals in Eqs. (4) and (8) without

using any approximation. This is not the case in the volumetric domain integrals, where an er-

ror may arise from the assumption of the small variation of fracture parameters along the local

crack segment Lc. (3) The new versions perform the integration over a disk perpendicular to the

crack front, and therefore determining the position of the integration points with respect to the

curved crack front is very simple. In fact, in these domains, expressing the stress, strain and dis-

placement fields in a curvilinear coordinate system is no longer required. This is not the case for

the volumetric domains, where expressing the fields in a curvilinear coordinate system requires

determining the position of integration points with respect to a curved crack front, which is usu-

ally performed by minimizing the distance of the integration point from the crack front through

a Newton procedure. (4) As the 2D plane strain auxiliary fields do not satisfy the compatibility

and equilibrium equations in the curvilinear coordinates, a new term containing the higher order
20



  

gradients of the auxiliary fields emerges in the volumetric domain integral formulation (the second

term in Eq. (13)). In the disk-shaped domain integral formulation, however, such a term does not

exist as the 2D plane strain auxiliary fields satisfy the compatibility and equilibrium equations

throughout a disk-shaped domain. (5) The new formulation requires less computational cost, as it

performs integration over a disk rather than a tube. Moreover, unlike the volumetric approach, the

disk-shaped domain integrals do not require performing iterative procedures to obtain the fields in

curvilinear coordinates, which significantly reduces computational effort. (6) In the disk-shaped

domain integral, the in-plane and anti-plane fields are separated, and cannot influence each other

in the computation of fracture parameters. In fact, the in-plane numerical results cannot affect the

computation of out-of-plane mode III stress intensity factor, and anti-plane numerical fields cannot

also influence the computation of in-plane mode I and II stress intensity factors.

4. Finite element implementation details

New formulations for the evaluation of pointwise J- and interaction integrals using disk-shaped

domains were presented in Section 3. As this type of domain cannot be represented by a set of

volumetric elements, the existing elements cannot be directly used in the integration process. A

novel, efficient and accurate approach for the evaluation of domain integrals, based on using a set

of virtual triangular and line elements, is now presented. In this approach, the disk-shaped domain

A is filled with virtual quadratic triangular elements, while the contours on the crack surfaces, Γ−

and Γ+, are discretized by line elements (see Fig. 5). These elements are referred to as virtual since

they are not used while performing the finite element solution of the boundary value problem. In

fact, these elements are constructed in the post-processing stage, and discarded after the domain

integrals are evaluated at the point s along the crack front. The presented domain integration can

be readily implemented in any FE code. Moreover, these virtual elements make the process of

integrating over the domain completely independent of the mesh structure and resolution around

the crack front. This is a great advantage, as accurate domain integrals can be evaluated by using
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fine virtual elements, although a coarse mesh discretization may have been used for the finite

element solution.

Consider a point s along the crack front with the local coordinate system x1x2x3. Due to the

domain symmetry, only one-quarter of the disk of radius Rd is discretized with virtual triangular

elements, and the contour Γ+ is discretized by line elements. The integration over the other three

quarters is readily evaluated by the reflection of integrating points of the generated virtual elements

(see Fig. 5). Quarter-point tetrahedrals reproduce square root singular (1/
√

r) fields in the vicinity

of the crack front; therefore, evaluation of area integrals in Eqs. (17) and (20) requires numerical

integration of singular integrands of type 1/r. Standard Gauss-quadrature integration scheme per-

forms well only when the integrand varies gradually; in fact, the use of standard quadrature rules

to compute the integration of singular functions results in significant errors unless the domain is

subdivided into many subdivisions. Here it is proposed that the mid-side nodes of the virtual tri-

angular/bar elements attached to the crack front be moved to the quarter-point position (see Fig.

5). These quarter-point virtual elements significantly improve the accuracy of the numerical in-

tegration, as the determinant of Jacobian matrix cancels out the singular terms in the integrands

(see Appendix B for more explanation). It is noteworthy that these virtual quarter-point triangular

elements have to be used only when quarter-point tetrahedral elements have been employed in the

FE solution; virtual standard triangular elements would suffice when standard tetrahedral elements

are used in the vicinity of the crack front.

Using the virtual elements, evaluation of the domain integrals in Eqs. (17) and (20) follows

the same standard Gauss-quadrature integration scheme available in any FE code:

J(s) =

elems∑
A

gpts∑
p

{[(
σi j

∂u j

∂x1
−Wδ1i

)
∂q
∂xi

]
|J|

}
p
wp −

elems∑
Γ−+Γ+

gpts∑
p

[(
σ2 j

∂u j

∂x1
m2q

)
|J|

]
p
wp (21)
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Figure 5: (a) Virtual second-order triangular and line elements constitute the integration domain,
(b) details of the virtual mesh

I(s) =

elems∑
A

gpts∑
p

{[(
σi j

∂uaux
j

∂x1
+σaux

i j
∂u j

∂x1
−WIδ1i

)
∂q
∂xi

]
|J|

}
p
wp−

elems∑
Γ−+Γ+

gpts∑
p

[(
σ2 j

∂uaux
j

∂x1
m2q

)
|J|

]
p
wp (22)

where the summations over area A and contour Γ−+Γ+ include all the virtual triangular and line

elements, respectively. The sum over p includes element integration points, ‘gpts’, of the virtual

elements, ‘elems’, where the bracketed quantities {}p and []p are evaluated and multiplied by the

corresponding weight wp. Repeated indices imply summation, and |J| denotes the determinant of

the coordinate Jacobian matrix of the virtual triangular and bar elements.

The computation of area integrals in Eqs. (21) and (22) requires the computation of the stress,

strain and displacement gradient tensors at the integration points of the virtual elements. These

values have to be extracted from the FE solution over the tetrahedral element that contains the

integration point of the virtual element. This requires the following steps: (i) The tetrahedral

element containing the virtual integration point p is identified by using a search algorithm ex-

plained in Appendix C; (ii) The local coordinates of the point p inside the tetrahedral element are

computed using the expressions in Appendix C. (iii) The stress, strain and displacement gradient
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tensors of these integration points are directly obtained from the FE displacement solution over the

tetrahedral element. All these quantities must be expressed in the local coordinate system x1x2x3

located at point s on the crack front (see Fig. 5). The evaluation of line integrals also requires the

computation of surface traction σ2 j and displacement gradient ∂u j/∂x1 at the virtual integration

point p on the crack surface. Computing these values also requires the following steps: (i) The

triangular element that contains p is identified; (ii) The local coordinates of the point p in the tri-

angular element are computed; (iii) σ2 j and ∂u j/∂x1 at p are computed by interpolating the nodal

tractions and displacement derivatives using the element shape functions (see Appendix C). It is

also straightforward to compute the values for q-function and its derivative, and the auxiliary fields

σaux
i j , and ∂uaux

j /∂x1 at the virtual integration point p. This only requires substituting the position

of p in the local coordinate system located at s into the q-function and analytical auxiliary fields

expressions given in Appendix A. As q is a function of x1 and x2 only, the derivative with respect

to x3 vanishes (∂q/∂x3 = 0). The procedure of computing J-integral and the SIFs is demonstrated

in Algorithm (1).

All procedures employed in this work were implemented into the Geomechanics module (Paluszny

and Matthäi, 2009; Paluszny and Zimmerman, 2011) of the Complex System Modeling Platform

(CSMP++), an object-oriented finite element based API developed for the simulation of com-

plex geological processes (Matthai et al., 2001). The system of equations resulting from the finite

element method accumulation is solved using the Fraunhofer SAMG Solver (Stüben, 2001).

5. Numerical examples

In order to demonstrate the efficiency and accuracy of the proposed approach, the J-integral

and stress intensity factors were computed for the following three crack configurations: (i) through-

the-thickness crack in a large thin plate with lateral constraint (plane strain condition); (ii) penny-

shaped crack embedded in an infinite solid; and (iii) elliptical crack embedded in an infinite solid,

as shown in Fig. 6.

24



  

Algorithm 1 Evaluation of the pointwise J-integral and SIFs using the disk-shaped domain inte-
gral method

Generate a local coordinate system x1x2x3 at the point s using the unit vectors b1, b2 and b3.
Create a virtual disk-shaped integration domain using quadratic triangular and line elements.
for e := 1→ Ntr do

for p := 1→ NP do
Find the tetrahedral element which contains the point p (Appendix C.1).
Compute the local coordinates (ξ, η, ζ) of p in the tetrahedral element (Appendix C.1).
Compute σi j, εi j, ∇ × u at p in the local coordinate system.
Compute the auxiliary fields σaux

i j , and ∂uaux
j /∂x1 at p (Appendix A) .

Compute ∂q/∂xi at p.
Compute |J| at p using virtual triangular element coordinate matrix.

Accumulate: J(s)← J(s) +

[(
σi j

∂u j

∂x1
−Wδ1i

)
∂q
∂xi

]
|J|wp

Accumulate: Iz(s)← Iz(s) +

[(
σi j

∂uaux
j

∂x1
+ σaux

i j

∂u j

∂x1
−WIδ1i

)
∂q
∂xi

]
|J|wp z = I, II, III

end for
end for
for e := 1→ Nli do

for p := 1→ NP do
Find the triangular surface element which contains the point p (Appendix C.2).
Compute the local coordinates (ξ, η) of p in the triangular element (Appendix C.2).
Compute the traction σi j, and ∇ × u at p in the local coordinate system.
Compute the auxiliary field ∂uaux

j /∂x1 at p (Appendix A).
Compute q at p.
Compute |J| at p using virtual line element coordinate matrix.

Accumulate: J(s)← J(s) −
(
σ2 j

∂u j

∂x1
m2q

)
|J|wp

Accumulate: Iz(s)← Iz(s) −
(
σ2 j

∂uaux
j

∂x1
m2q

)
|J|wp z = I, II, III

end for
end for
Compute SIFs from Eq. (12)
. Ntr, Nli, and NP are the numbers of virtual triangular elements, virtual line elements, and the

element’s integration points, respectively. . Iz(s) is computed using the auxiliary fields of crack
deformation mode z.
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5.1. Experimental setup

All the crack bodies are subjected to a uniform uniaxial tension in the X2 direction over the

top and bottom surfaces. The cracks lie in the plane X2 = X1 cot β which generates the angle of β

with the direction of applied load. A horizontal crack configuration (β = 90◦) produces pure mode

I crack deformation, while the inclined one (0◦ < β < 90◦) provokes a mixed-mode condition.

In these configurations, a denotes half of the crack length for the through crack, crack radius for

the penny-shaped crack, and semi-major axis for the elliptical crack. The semi-minor axis b of

the elliptical crack is perpendicular to the X1X2 plane. The crack length to body width ratio of

a/w = 0.1 was used for all the cracked bodies. The crack length to the plate thickness of a/t = 1

was considered for the through-the-thickness crack. As the fracture parameters of these crack

configurations are independent of the value of Young’s modulus, an arbitrary value of E = 1 was

used in all models. The choice of Poisson’s ratio is not arbitrary, as the mode II and III SIFs of

embedded cracks depend strongly on the value of this material property (see analytical solutions

in Appendix D). In this work, a Poisson’s ratio of ν = 0.3 was used for all simulations.

5.1.1. Boundary conditions

Due to the symmetry in geometry and loading conditions, only one-eighth (X1 > 0, X2 >

0, X3 < 0) and one-half (X3 < 0) of the cracked bodies were modeled for pure mode I (β = 90◦)

and mixed-mode (β = 45◦) conditions, respectively. The following boundary conditions were

applied for mode I models: u1 = 0 over the plane X1 = 0, u2 = 0 over the plane X2 = 0 except over

the crack surface, u3 = 0 over the plane X3 = 0, and σ = 1 over the plane X2 = w. The applied

boundary conditions for the mixed-mode models are also as follows: u1 = 0 at the point X1 = X2 =

−w, X3 = 0, u2 = 0 over the plane X2 = −w, u3 = 0 over the plane X3 = 0, and σ = 1 over the

plane X2 = w. For the through-the-thickness crack, the following additional boundary condition

was also applied, to ensure zero lateral displacement: u3 = 0 over the plane X3 = −t. This

boundary condition imposes a plane strain condition over the cracked plate, where the pointwise

SIFs at any point on the crack front follows the solution of the equivalent 2D problem of an
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Figure 6: Schematics of (a) Through-the-thickness crack in a large thin plate under uniaxial ten-
sion; (b) Penny-shaped/elliptical crack embedded in an infinite solid under uniaxial tension.

inclined central crack in a large plane. This solution gives the SIFs as follows: KI = σ
√
πa sin2 β,

KII = σ
√
πa sin β cos β, and KIII = 0. These formulas along with the analytical solutions for the

SIFs of embedded inclined penny-shaped and elliptical cracks in infinite solids given in Appendix

D will be used to validate the numerical results.

5.1.2. Mesh

An octree-based mesh generation software was employed to generate arbitrary meshes for all

specimens, using 10-noded isoparametric tetrahedal elements. For the elements attached to the

crack front, the nodes near the front are moved from the mid-side point to the quarter-point posi-

tion to produce inverse square root singular fields near the front. The curved crack fronts impose

one curved edge for the tetrahedral elements sharing an edge with the crack front. When using

quarter-point elements, the Jacobian determinant over small volume near the curved edges be-

comes negative. To avoid this, the curve edges were straightened by moving the mid-side nodes
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(a) (c)(b)

(d) (e)

Figure 7: (a) Finite element mesh discretizing one-half of an embedded penny-shaped crack; De-
tails of mesh in crack-front region for (b) through-the thickness, (c) penny-shaped, (d) elliptical
(b/a = 0.7), (e) elliptical (b/a = 0.4) cracks. For all cases Ln ≈ a/20.

of the curved segments. The refinement of mesh near the crack front was controlled by assign-

ing the number of segments along the crack front. Assume that the crack front of length L f is

discretized by N f segments. A parameter called the nominal length (size) of the elements in the

crack front region can be defined as Ln = L f /N f . The nominal element length Ln represents the

approximate length of the elements’ sides near the crack front, and therefore gives an approximate

for the average size of the tetrahedral elements in the crack front region. In all models, the degree

of mesh refinement in the crack front region was controlled by keeping the nominal crack front

element size about one twentieth of the crack length (Ln ≈ a/20). As estimations suggest that the

size of the singular dominant zone depends mainly on the crack length, ranging between a/10 and

a/50 (Kuna, 2013), keeping Ln ≈ a/20 ensures that the quarter-point elements at the crack front

predominantly remain in the singular dominant zone where the fields have the inverse square root

singularity. Four-point, three-point, and two-point Gaussian quadrature rules were employed for

the numerical integration over tetrahedral, triangular, and bar elements, respectively. Figure (6)

shows the finite element mesh of the penny-shaped crack problem together with the local mesh

refinements near the crack front in different crack configurations.
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5.1.3. Domain size and virtual mesh

For all crack configurations, the mesh-dependent domain radius of Rd = Ln has been used

to generate the virtual domains and compute the fracture parameters. Domains were built at the

locations of both corner and mid-side nodes of the segments along the crack front. The refinement

of the virtual mesh is controlled by the number of domain elements in the radial direction k as

shown in Fig. 5. A similar virtual mesh structure as the one shown in Fig. 5, with four elements

in radial direction (k = 4), was used to compute the fracture parameters. This choice yields 112

quadratic triangular elements, containing 112 × 3 integration points, together with 8 quadratic

line elements, containing 8 × 2 integration points. The reasons for these choices are explained in

Sections 6.1 and 6.2.

5.1.4. The scalar function q

In order to compute the fracture parameters, a smooth function q must be defined over the

domain (disk) area. All the numerical results in this research are determined by using q = 1−r/Rd,

where r =

√
x2

1 + x2
2 is the distance from disk center and Rd is the domain radius (see Fig. 5). The

derivatives of this function (∂q/∂x1 = −x1/rRd and ∂q/∂x2 = −x2/rRd) are directly evaluated at

the integration points of the virtual triangular elements. Section 6.3 explains how numerical results

are influenced by changing this function.

5.2. Numerical results

After the computation of the pointwise SIFs along the crack fronts, the average numerical error

of SIF computation for individual modes ei (i = I, II, III) and average total error et were evaluated

by using Eq. (23). In these expressions, KA
i and KN

i are the pointwise analytical and numerical

mode i SIFs, respectively, and L f is the crack front length. Wherever closed form integration was

not available, a trapezoidal rule has been employed to evaluate the integrals numerically.

29



  
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

Distance from the mid−plane (x/t)

N
or

m
al

iz
ed

 S
tr

es
s 

In
te

ns
ity

 F
ac

to
r 

(K I/σ
√a

)

 

 

Analytical
Interaction Integral (far field load)
J−Integral (far field load)
Interaction Integral (surface traction)
J−Integral (surface traction)

(a)

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

φ (Degrees)

N
or

m
al

iz
ed

 S
tr

es
s 

In
te

ns
ity

 F
ac

to
r 

(K I/σ
√a

)

 

 

Analytical
Interaction Integral (far field load)
J−Integral (far field load)
Interaction Integral (surface traction)
J−Integral (surface traction)

(b)

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

ω (Degrees)

N
or

m
al

iz
ed

 S
tr

es
s 

In
te

ns
ity

 F
ac

to
r 

(K I/σ
√a

)

 

 

Analytical
Interaction Integral (far field load)
J−Integral (far field load)
Interaction Integral (surface traction)
J−Integral (surface traction)

(c)

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

ω (Degrees)

N
or

m
al

iz
ed

 S
tr

es
s 

In
te

ns
ity

 F
ac

to
r 

(K I/σ
√a

)

 

 

Analytical
Interaction Integral (far field load)
J−Integral (far field load)
Interaction Integral (surface traction)
J−Integral (surface traction)

(d)

Figure 8: The variation of normalized mode I (β = 90◦) analytical and numerical SIFs along
the fronts of (a) through-the-thickness, (b) penny-shaped, (c) elliptical (b/a = 0.7), (d) elliptical
(b/a = 0.4) cracks using J- and interaction integrals. The mode I average error is as follows: (a)
eI = 0.011, (b) eI = 0.008, (c) eI = 0.008, (d) eI = 0.008.

ei =

∫
L f

|KA
i − KN

i |dl∫
L f

|KA
i |dl

i = I, II, III et =

∑III
i=I

∫
L f

|KA
i − KN

i |dl

∑III
i=I

∫
L f

|KA
i |dl

(23)

5.2.1. Mode I loading condition

Fig. 8 shows the variation of the pointwise mode I stress intensity factor along the crack front

of different crack configurations when β = 90◦. Analytical solutions for a 2D plane strain central

crack problem, and 3D penny-shaped and elliptical cracks embedded in infinite solids (Appendix

D) are also plotted. Here, φ and ω are the polar angle of the circle, and the parametric angle
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of the ellipse, respectively. The numerical KI values have been computed by the evaluation of

J- and interaction integrals in Eqs. (21) and (22), and their substitution into Eqs. (9) and (12)

for the following loading conditions: (i) the specimens are subjected to original far field load

σ as shown in Fig. 6; (ii) instead of applying the load at the far field, σ was applied over the

fracture surface. These loading conditions are equivalent according to the superposition principle,

generating identical SIFs. The average error eI for any of these four sets of results is about 1%.

Highly accurate values in the case of surface tractions demonstrate the efficiency of line elements

for accurate numerical computation of surface traction integrals.

5.2.2. Mixed-mode loading condition

Fig. 9 shows the variation of pointwise mixed-mode SIFs along the crack front of four different

crack configurations when β = 45◦. The average total error et for all the cases is about 1%. These

results are obtained from a relatively coarse mesh (see Fig. 7), and a finer mesh will result in the

computation of even more accurate SIFs. These results demonstrate the efficiency of the disk-

shaped domains to accurately compute the interaction integral from arbitrary meshes. Section 6

discusses the effects of actual and virtual mesh refinements as well as domain radius on these

results.

5.2.3. Evaluation of SIFs near the meeting point of crack front and free surface

Consider the through-the-thickness crack problem, when no lateral constraint is applied to the

plate, leaving the lateral surfaces to be traction free. The main characteristics of the behavior in

this cracked body are: (i) At the intersection of the crack front and free surface a corner singular-

ity occurs, where the order of the singularity, which depends on Poisson’s ratio as well as on the

loading conditions, is different from the crack singularity (Benthem, 1977; Bažant and Estenssoro,

1979). As a result, at the exact corner point the definition of crack stress intensity factor loses its

meaning, since an inverse square root singular field no longer exists (Nakamura and Parks, 1988,

1989). (ii) Modes II and III become coupled, meaning that applying primary shear or anti-plane
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Figure 9: The variation of normalized mixed-mode (β = 45◦) analytical and numerical SIFs along
the fronts of (a) through-the-thickness, (b) penny-shaped, (c) elliptical (b/a = 0.7), (d) elliptical
(b/a = 0.4) cracks. The average total SIF computation error is as follows: (a) et = 0.005, (b)
et = 0.011, (c) et = 0.012, (d) et = 0.013.

loading on the plate also generates a coupled mode III, or mode II crack deformation, respectively

(Bažant and Estenssoro, 1979; Nakamura and Parks, 1988, 1989; Kotousov et al., 2013). This

coupling occurs due to the Poisson’s ratio effect or the redistribution of stresses near the free sur-

faces (Kotousov et al., 2010, 2013; Pook et al., 2014). For example, when a primary mode II crack

deformation (KII > 0) is applied to the cracked plate, a coupled mode III deformation also occurs

due to the Poisson’s effect, as the plate above the crack plane is expanded along thickness direc-

tion, while the region below the crack plane is contracted. It has been shown that the intensities of

the coupled modes can be as strong as those of primary modes (Kotousov et al., 2013). Because

of these two characteristics, the strong 3D effects influences the stress fields near the crack front,
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and a classical two-dimensional (plane) elasticity solution is no longer able to reproduce the stress

intensities along the crack front.

Now assume that a primary mixed-mode I/II load is applied on a through-the-thickness crack

with traction free surfaces. A few characteristics of the SIF variation along the crack front must be

noted: (i) As explained earlier, although the cracked plate is primarily subjected to a mixed-mode

I/II loading condition, a couple mode III crack deformation is also created due to the Poisson’s

effects. (ii) Under symmetric loading, the corner singularity is weaker than the crack singularity,

and therefore the local KI must approach zero at the free surface (Nakamura and Parks, 1988; Ben-

them, 1977; Bažant and Estenssoro, 1979; Benthem, 1980; He et al., 2015). This does not mean

that the stress is finite at the corner point, but it demonstrates that KI cannot be used to character-

ize the fields at the corner point. (iii) On the other hand, for the antisymmetric loading condition,

the corner singularity is stronger than a crack singularity, and therefore the local KII approaches

infinity at the free surfaces (Nakamura and Parks, 1989; Benthem, 1977; Bažant and Estenssoro,

1979; Benthem, 1980; He et al., 2015). (iv) The coupled mode III deformation behaves differently

compared to KI and KII since KIII must be zero at mid-plane and free surfaces due to the symmetry

and traction free boundary conditions, respectively. In fact, KIII is zero at the mid-plane, reaches

its maximum near the free surface, and drops back to zero at the corner point (Harding et al.,

2010; Kotousov et al., 2010, 2013). This behavior is not observed in the results of Nakamura and

Parks (1989) as the coupled mode III SIF, which were computed using volumetric domain integral

approach, appears to approach infinity at the free surface. Such behavior is inconsistent with the

free boundary conditions and zero anti-plane shear stress at the free surfaces. This inconsistency

has been noticed by Harding et al. (2010); Kotousov et al. (2010), as the KIII values they computed

using the stress extrapolation method deviates from the ones obtained by Nakamura and Parks

(1989) for the points very close to the corner point. The reason for this inconsistency has not been

investigated previously.

The proposed method is now used to compute the SIFs of a plate with traction free lateral
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surfaces containing an inclined through-the-thickness crack with β = 45◦. A very fine mesh (Ln =

a/400) was generated, and the SIFs at nodes along the crack front were computed using the disk-

shaped domains of radius Rd = 2Ln. Fig. 10a shows the variation of SIFs against the normalized

distance from the mid-plane x/t. The specimen was also modeled and analyzed with Abaqus,

where a structured mesh by collapsed quarter-point hexahedral elements with an equivalent crack

front region mesh density was used. The SIFs were computed using an equivalent cylinder radius

of Rd = 2Ln in the contour integral module of this commercial FE package. The module uses

the volumetric cylindrical domains explained in Section 2 to compute the SIFs (Abaqus, 2012).

These results are plotted against the normalized distance from the mid-plane in Fig. 10a. A

comparison of the two methods shows that the results are in very close agreement, except very near

the corner point x/t = 1. The results from both methods demonstrate that KI and KII approach zero

and infinity, respectively. However, the coupled KIII results from the cylindrical domains tend to

infinity, similar to the trend reported in Nakamura and Parks (1989), while those from disk-shaped

domains seem to approach zero, which is in consistency with the trend reported by Harding et al.

(2010); Kotousov et al. (2010, 2013). Let us now use Eq. (19) instead of Eq. (20) to evaluate the

integrals for the disk-shaped domains. Eq. (19) contains one more term, the second term, where

in-plane and anti-plane crack tip fields are coupled in the process of SIF computation. This term

vanishes in Eq. (20) by employing the superposition principle, as discussed in Section 3. The

following steps were taken to compute this term: (i) the integral associated with this term was

computed at the points along the crack fronts; (ii) at each point a polynomial equation was fitted

locally to the integral values using the least square scheme; (3) the derivative of the polynomial

was computed at the point. Fig. 10b shows the variation of SIFs computed by Eq. (19) against

the normalized distance from the mid-plane. As is seen, the results of the disk-shaped domains

are now consistent with cylindrical domains, providing questionable trend for KIII near the corner

point.

Consider the integral term developed by substituting i = 3 into Eq. (6). This integral term is
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Figure 10: The variation of normalized numerical SIFs along the through-the-thickness crack
front when the lateral surfaces are traction free (β = 45◦). For both plots the cylinder results are
computed from cylindrical domains using Abaqus contour integral module. Eqs. (20) and (19) are
used respectively to compute disk results for (a) and (b).

evaluated over the tubular domain shown in Fig. 2. Also consider the function q over the Volume

V as q = q′(x1, x2)q′′(x3) where q′(x1, x2) describes the variation of q over a disk-shaped area A,

and q′′(x3) describes the variation of q along the small crack front segment Lc (see Fig. 3). If the

crack fields vary slightly along Lc, the integral
∫

A
σ3 j∂u j/∂x1q′(x1, x2) can be assumed to behave

linearly along Lc. Using integration by parts, therefore, the term i = 3 in Eq. (6) can be expressed

in the form of an area integral as

∫
V
σ3 j

∂u j

∂x1

∂q
∂x3

dV∫
Lc

q(x3)dx3

= −
∂

∂x3

∫
A
σ3 j

∂u j

∂x1
q′(x1, x2)dA (24)

where A is the disk-shaped area developed when an orthogonal plane to the crack front intersects

the tubular region V at the mid-point of Lc (see Fig. 3). A similar equivalent area integral can be

found for the term developed when i = 3 is substituted in the first term of Eq. (13). These rela-

tions indicate that the volumetric versions of domain integrals in Eq. (6) and (13) approximately

evaluate the second terms of the disk-shaped domain integral formulas in Eqs. (16) and (19). As

discussed in Sections 3.1 and 3.2 these terms couple the fields from in-plane and anti-plane loads.
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It was then shown that, by applying the superposition principle, these terms can be eliminated,

and Eqs. (17) and (20) were suggested for the disk-shaped domain integral formulations. The

inaccurate trend of KIII near the corner point when using volumetric domain integrals can be at-

tributed to the presence of these terms in their formulation. Strong variation of modes I/II fields

occurs near the corner point, and the gradients of these fields with respect to x3 are high enough to

influence KIII significantly via the coupling term developed by substituting i = 3 in Eq. (13), or the

second term in Eq. (19). Such an influence is not allowed in the disk-shaped domain formulation

proposed in this research i.e. Eq. (20); therefore this formulation can reproduce a more accurate

variation of SIFs near the corner point. It must be noted that the values of SIFs in Fig. 10a may

vary slightly by using a finer mesh, but the trend remains the same. It is generally advised that a

more refined mesh is used to compute more accurate values of the SIFs near the corner point.

6. Discussion

Three parameters mainly influence the computation of the fracture parameters using the pro-

posed method: mesh refinement at crack front region, virtual mesh refinement of the disk, and

domain (disk) size. The domains must remain in the singular dominant region, where a plane

strain condition prevails. Thus, one should avoid using large domains compared to the crack sizes.

However, a very small domain may capture only the fields available from the FE solution, which

are not accurate enough to represent crack tip fields. Therefore, for every mesh resolution, there

will be an optimum domain size at which the computed fracture parameters are the most accurate.

As the degree of the accuracy of the fields near the crack depends on the type and refinement of

the elements in that region, it is expected that the optimum domain size depends mainly on the

type and size of the elements in the crack front region. To clarify the dependency of the proposed

domain integral approach on these three parameters, an extensive parametric study is carried out

in this Section. The SIFs of the crack configurations described in the previous section were com-

puted while changing these three parameters, and the formulas in Eq. (23) were used to evaluate
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the average of total SIF computation error.

6.1. Refinement of virtual mesh

Consider the virtual mesh structure shown in Fig. 5 with k and 4 × k grids in the radial and

circumferential directions, respectively. In this mesh structure, k controls the virtual mesh refine-

ment by generating 4 × k(2 × k − 1) virtual triangular elements and 2 × k line elements. The crack

front of length L f is discretized by N f segments. The nominal size of the elements in the crack

front region is defined as Ln = L f /N f , which quantifies the refinement of the actual mesh in the

crack front region. Figure (11) shows the variation of average total SIF error et for different ac-

tual mesh refinements, a/Ln, versus the number of virtual elements in radial direction, k, used to

compute the SIFs of the penny-shaped crack for two domain radiuses Rd = a/10 and Rd = a/20.

In both virtual and actual meshes, quarter-point elements have been used at the immediate crack

front region. These graphs demonstrate the following: (i) The virtual elements are very efficient in

capturing the crack fields, as accurate values can be computed for the SIFs even when very coarse

virtual elements are employed (k = 1), and using more refined mesh does not significantly change

the SIFs. This is mainly because the quarter-point virtual elements are very accurate and efficient

in numerical integration of singular fields (see Appendix B). (ii) The SIF computation error drops

slightly by increasing k to 4, remaining steady for greater values of k. A similar behavior was also

observed in other crack configurations and other choices of the domain radius. This suggests that

the choice of k = 4 generates a sufficiently refined virtual mesh that is able to capture all the crack

tip field variations that a very refined actual mesh can reproduce. This finding allows the virtual

mesh density to be chosen independent of the actual mesh refinement, and of the domain size. It

is recommended that k = 3, 4 be used for the fast and efficient computation of SIFs, and k = 5, 6

for a more robust SIFs computation.
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Figure 11: The variation of the total SIF computation error et of the penny-shaped crack under
mixed-mode loading condition (β = 45◦) versus the number of the virtual elements in the radial
direction k in different mesh refinements: (a) Rd = a/20, (b) Rd = a/10.

6.2. Disk (domain) radius

An optimum size is expected to exist, which depends on the local actual mesh refinement

in the front region. A very large domain compared to the crack size leads to the violation of

the basic assumption of having a plane strain condition within the domain. The domain radius,

therefore, must be chosen to be as small as possible. The size of the singular dominant zone can be

considered as an upper bound for the domain radius. This requires the domain radius to be smaller

than the size of the singular dominant zone which mainly depends on the characteristic crack

length, ranging between a/10 and a/50 (Kuna, 2013). However, very small domains might also

introduce high errors since the closer to the crack front, the higher the error of FE fields (Paluszny

and Zimmerman, 2011). In addition, crack tip fields are obtained from the FE solution, where

the equilibrium equations are satisfied on the average within the element. Therefore, domains

significantly smaller than crack front elements may not capture the crack tip fields properly. Given

these facts, the appropriate domain size is found to be a balance between the satisfaction of prior

assumption of plain strain fields and the accuracy of FE fields in the domain. In an arbitrary

mesh around the crack front, the size of the elements may vary significantly, and an approximate

(nominal) value should be used to represent the average size of the elements. The nominal element
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Figure 12: The variation of the total numerical error et against the normalized domain radius Rd/Ln

for (a) through-the-thickness, (b) penny-shaped, (c) elliptical (b/a = 0.7), (d) elliptical (b/a = 0.4)
cracks in different mesh refinements when using quarter-point tetrahedral elements.

size Ln = L f /N f is defined, where L f and N f are the length of the crack front and number of

segments used to discretize it, respectively. To investigate the idea of an optimum domain size, an

extensive parametric study was carried out to relate the SIF computation error to the domain radius

in different mesh refinements. The SIFs of the different crack configurations were computed for

different domain radiuses in different actual mesh densities, while the virtual mesh density was

kept constant by k = 6. This fine virtual mesh ensures that all the field variation in different actual

mesh refinements and domain radiuses are captured. Quarter-point elements were employed in the

crack front region in both actual and virtual meshes.

Figure (12) shows the variation of the average total SIF computation error versus the nor-
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malized domain radius Rd/Ln for different actual mesh refinements expanding from very coarse

meshes a/Ln ≈ 5 to very fine meshes a/Ln ≈ 35. The main features of the results in these graphs

are as follows: (i) For the through crack, the error et drops slightly from Rd = 0.5Ln to Rd = 1.5Ln,

at which point it stabilizes. As the whole plate is under plane strain conditions, 2D plane strain

crack tip fields are developed ahead of the crack front, and therefore the fracture parameters can be

computed very accurately, even when using very large domains. This is not the case for the other

crack configurations, where the plane strain condition prevails only close to the crack front. (ii)

For the embedded penny-shaped and elliptical cracks, except very coarse meshes, et slightly drops

by increasing the domain radius, reaching its minimum between Rd = Ln and Rd = 1.5Ln, and then

increases gradually for larger domain sizes. The decreasing trend in the beginning is explained by

the fact that increasing the domain size allows the capture of more representative crack tip fields,

and also, the overall influence of local numerical errors decreases as integration is performed over

a larger domain. The growth trend is because a larger domain is more likely to include the areas

at which the plane strain condition no longer prevails. The plots clearly show that there exists an

optimum domain radius at which the error hits its minimum. This behavior is not observed for the

very coarse mesh, as the domains are already very large compared to the crack size, and the min-

imum error is more likely to occur at Rd ≈ 0.5Ln. According to these results, it can be concluded

that there exists a mesh dependent optimum domain radius in the range of 0.5Ln ≤ Rd ≤ 1.5Ln,

where the SIF computation error is minimum. The optimum radius approaches Rd = 0.5Ln and

Rd = 1.5Ln for coarse and fine meshes, respectively, and a domain radius of Rd = Ln is the best

choice that works for both fine and coarse meshes.

Figure (13) presents the variation of the total SIF computation error versus the normalized

domain radius Rd/Ln, when standard tetrahedral elements are employed at the crack front region

instead of quarter-point ones. Equivalently, instead of quarter-point triangular elements, standard

quadratic triangular elements are used at the first row in the virtual mesh. The main features

of the results in these plots are as follows: (i) The SIF computation error is significantly higher
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Figure 13: The variation of the total numerical error et against the normalized domain radius Rd/Ln

for (a) through-the-thickness, (b) penny-shaped, (c) elliptical (b/a = 0.7), (d) elliptical (b/a = 0.4)
cracks in different mesh refinements and in the absence of quarter-point tetrahedral elements.

in these plots compared to the ones in Fig. 12, especially at small domain sizes. The errors in

these plots are approximately two to three times larger than the errors in Fig. 12. This highlights

the efficiency of the quarter-point elements in improving the numerical solution of the crack tip

fields. (ii) Similar trends are observed in these plots to those shown in Fig. 12. One important

difference is that the errors for the small domains are significantly higher than those shown in

Fig. 12. This indicates that when standard tetrahedral elements are used, larger domains should

be preferred to compute accurate SIF values. (iii) The plots clearly demonstrate the existence of

an optimum mesh-dependent domain radius at which the SIF computation error hits its minimum.

This optimum domain radius is generally in the range of Ln ≤ Rd ≤ 3Ln approaching Rd = Ln
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and Rd = 3Ln for very coarse and fine meshes, respectively. A domain radius of Rd = 1.5Ln is

suggested as the best choice, that works for both fine and coarse meshes.

6.3. The choice of the q-function

As was explained in Sections 2 and 3, an arbitrary continuously differentiable, the class C1,

scalar function q has to be defined over the domain. In order to assess the influence of different q

functions, the SIFs of the penny-shaped crack were computed using the q function q = 1− (r/Rd)n

with the following four different powers: n = 0.5, 1, 1.5, 2. The model specifications such as

actual mesh refinement, virtual mesh refinement and domain radius are the same as the ones given

in Section 5.1. The average total SIF error et is as follows: et = 5% for n = 0.5; et = 1.1%

for n = 1, 1.5; and et = 1.2% for n = 2. The reason for the high numerical error in the case

n = 0.5 seems to be due to the fact that the derivatives of q function become singular at the disk

center. This results in a less accurate numerical integration over the domain. Additionally, due to

the singularity at the disk center, the sampling points near the disk center contributes to the entire

integral much more than do the points near the disk boundaries. As the numerical error near the

crack front is larger, it is expected that such a weighing process will lead to a larger numerical error

in the computation of the SIFs. The accuracy of the results for the other three cases n = 1, 1.5, 2

seems to be about the same. However, an increase in n results in a higher average error, et. In

particular, the individual mode III error eIII grows significantly for n > 2. The reason for such

behavior is that increasing n makes the contribution of the sampling point near the boundaries

more significant than the points near the crack front. This induces another source of error due to

the fact that only near the crack front a plane strain state prevails, and far from the crack front a 3D

stress state is more likely to exist. To summarize, it is concluded that q function should be chosen

in a way that all sampling points contribute evenly to the entire integral. Therefore, the function

q = 1 − (r/Rd) is a suitable choice since (i) the linear variation of its derivatives can be captured

well in the numerical integration, and (ii) the sampling points all over the domain contribute evenly

to the entire integral.
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6.4. The choice of crack front points

In this paper the pointwise SIFs are reported at the position of both corner and mid-side nodes

of the crack front segments. However, disk-shaped domains can be constructed at any point along

the crack front, and not necessarily at the position of crack front nodes. To assess the influence

of the choice of points on the numerical results, the pointwise SIFs of the penny-shaped crack,

whose specifications are explained in Section 5.1, were computed for the following sets of points

separately: (i) positions of corner nodes of crack front segments; (ii) positions of mid-side nodes

of crack front nodes; (iii) positions of midpoints between corner and mid-side nodes of the crack

front segments. The average SIF error remains about 1% for all cases. This indicates the choice

of the points on the crack front does not influence the accuracy of the SIFs, and therefore the

pointwise SIFs can be computed accurately at any point along the crack front.

6.5. Potential extension of the method

The main focus of the present research is the computation of SIFs as the dominant influential

parameters near the crack front. Numerical and experimental results have recently demonstrated

that higher order terms of the crack tip asymptotic field, in particular T-stress, can also significantly

influence the stress distribution near the crack tip, and consequently the onset of fracture growth

(Smith et al., 2001; Ayatollahi et al., 2006; Berto and Lazzarin, 2010). Therefore, accurate com-

putation of higher order parameters is also of great importance in analyzing the growth of cracked

bodies. The method presented here can be readily extended to compute the T-stress in 3D cracked

bodies based on the original works by Kfouri (1986) and Toshio and Parks (1992) that describe

contour and domain integral formulations for evaluating the T-stress. The proposed methodology

is also applicable to determine the notch stress intensity factors of sharp isotropic and bi-material

V-notches, which makes it possible to efficiently use unstructured meshes to analyze V-notched

structures.
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7. Conclusions

A novel, efficient and accurate domain integral approach has been proposed for computing

pointwise J-integral and stress intensity factors of 3D crack configurations from unstructured

meshes. This method is based on the evaluation of domain integrals over disk-shaped domains,

and has the following advantages over volumetric domain approaches that are based on tubular

domains:

1. It can be directly applied to arbitrary tetrahedral meshes.

2. It requires less computational cost, as it performs integration over a disk rather than a tube.

3. It directly applies the original definition of the pointwise J- and interaction integrals.

4. Integration is performed over a disk perpendicular to the crack front, which is easy to gener-

ate and low in cost, and expressing the field in curvilinear coordinates is no longer required

for curved cracks.

5. As 2D plane strain auxiliary fields satisfy compatibility and equilibrium equations over a

disk, the term containing the higher order gradients of the auxiliary fields vanishes in this

new formulation.

6. The in-plane and anti-plane fields are separated, and cannot influence each other in the

computation of fracture parameters.

This method utilizes disk-shaped domains discretized with virtual triangular elements, which can

be readily implemented in any FE code. The results of this method have been validated for a

number of crack configurations in mode I and mixed-mode loading conditions, where the SIF

computation error remains within 1% for fine meshes and 2-3% for coarse ones. The results of an

extensive parametric study also suggests that an optimum mesh-dependent domain radius exists

at which the SIF computation error hits its minimum. This optimum radius is roughly equal to
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the nominal size of the elements at the crack front region. It was also shown that employing

quarter-point tetrahedral elements can improve the FE solution of the crack tip fields significantly.

These results provide further evidence of the applicability, efficiency and accuracy of unstructured

meshes to analyze cracked bodies.
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Appendix A. Auxiliary fields

It has been shown for 3D cracks that asymptotically, as r → 0, plane strain conditions prevail

locally, so that the three-dimensional deformation fields approach the two-dimensional plane strain

fields (Nakamura and Parks, 1988, 1989). Therefore, 2D plane strain fields can be employed to

express the auxiliary fields near any point along the crack front. The so-called Williams series

expansions describe the linear elastic stress fields for a 2D cracked plate subjected to an arbitrary

load (Williams, 1957). In the region close to the crack tip, the first terms in these expansions are

dominant. The auxiliary fields for 3D embedded cracks are therefore considered to be in the form

of these singular fields in the plane strain condition (σaux
33 = ν(σaux

11 + σaux
22 )). Eqs. (A.1) and (A.2)

give these stress fields when in-plane and anti-plane loads are applied, respectively (Anderson,

2005).
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Figure A.1: Local Cartesian coordinate system at a point along crack front and crack tip auxiliary
fields.
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Here r and θ are the polar coordinates in a local Cartesian coordinate system x1x2x3 which

is perpendicular to the crack front, as shown in Fig. A.1. The displacement fields adjacent to

the crack tip due to the in-plane and anti-plane loadings conditions, respectively, are given by
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(Anderson, 2005)
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where κ is a function of Poisson’s ratio, and under plane strain conditions, κ = 3 − 4ν. Under

plane strain conditions, the out-of-plane displacement uaux
3 vanishes when applying in-plane loads,

and in-plane displacements (uaux
1 and uaux

2 ) are zero when anti-plane loads are applied. The deriva-

tives of the displacement fields with respect to x1 are readily obtained from Eqs. (A.3) and (A.4)

as
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Appendix B. The performance of quarter-point virtual elements in integrating singular func-

tions

The line and area integrals in Eqs. (17) and (20) include singular terms of types 1/
√

r, and

1/r, respectively. This section explains how placing the mid-side nodes at the quarter-point posi-

tion near the crack tip leads to a more accurate numerical integration of these singular functions.
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Figure B.1: Configuration of nodes and integration points in (a) quarter-point line element and (b)
quarter-point triangular element.

Consider x1 = 0, x2 = L, and x3 = L/4 being the positions of nodes 1, 2 and 3 of the isopara-

metric quarter-point line element shown in Fig. B.1a. Considering the element shape functions

N1 = ξ(ξ − 1)/2, N2 = ξ(ξ + 1)/2, N3 = (1− ξ)(1 + ξ), the mapping of the geometry from the local

coordinate system x into the natural element coordinate system ξ, where −1 ≤ ξ ≤ +1, is given

by x(ξ) =
∑3

i=1 Nixi = (ξ + 1)2L/4. This mapping has a Jacobian of ∂x/∂ξ = (ξ + 1)L/2, which

cancels out the square-root singular term in the integrand (
∫ L

0
dx/
√

x =
∫ +1

−1

√
Ldξ). The standard

quadrature rule is now able to compute the exact value of the integral.

Consider now that the corner nodes 1, 2 and 3 of the quarter-point triangular element shown in

Fig. B.1b are located at (0, 0), (x2, y2), and (x3, y3), respectively. The positions of the mid-side node

5 and the quarter-point nodes 4 and 6 are ((x2 + x3)/2, (y2 + y3)/2), (x2/4, y2/4), and (x3/4, y3/4),

respectively. Considering the natural coordinates 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 and γ = 1 − ξ − η, the

element shape functions are N1 = γ(2γ − 1), N2 = ξ(2ξ − 1), N3 = η(2η − 1), N4 = 4γξ, N5 = 4ξη,

N6 = 4γη, and the mapping of the geometry from the local coordinate system xy into the natural

coordinate system ξη is given by
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x(ξ, η) =
∑6

i=1 Nixi = (ξ + η)(ξx2 + ηx3)

y(ξ, η) =
∑6

i=1 Nixi = (ξ + η)(ξy2 + ηy3)

r(ξ, η) = (ξ + η)2

√[
ξx2 + ηx3

ξ + η

]2

+

[
ξy2 + ηy3

ξ + η

]2

(B.1)

where r denotes the radial distance from the node 1 (crack tip). This mapping gives the deter-

minant of the Jacobian matrix J = ∂(x, y)/∂(ξ, η) as |J| = 2(ξ + η)2(x2y3 − x3y2) which cancels out

the singular term in the integrand:

∫
A

dA
r

=

∫ 1

0

∫ 1

0

2(x2y3 − x3y2)√[
ξx2 + ηx3

ξ + η

]2

+

[
ξy2 + ηy3

ξ + η

]2
dξdη (B.2)

in which A is the area of the triangular element. This transformation significantly improves

the accuracy of the numerical integration by a standard quadrature-rule procedure. In fact, the

integration points are placed closer to the singular point in quarter-point elements, which helps

them to efficiently capture the high gradients of singular integrands near the singular point.

Appendix C. Obtaining field values at a given point in tetrahedral/triangular elements

The evaluation of J- and interaction integrals using the proposed disk-shaped domain integral

method requires the computation of the field values at a given point inside tetrahedra or triangles.

In order to obtain the field values at the given point p first the tetrahedral or triangular element

containing it must be identified through a search algorithm. Then, the natural coordinates of that

given point inside the element must be determined. The fields can then be readily obtained through

the shape functions.

Appendix C.1. Tetrahedral element

An unstructured mesh of a 3D cracked body mainly generates two types of tetrahedral ele-

ments surrounding the crack front: (i) tetrahedral elements which share a corner node with the
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Figure C.1: Mapping of the point p inside (a) standard quadratic tetrahedral, (b) corner-based
quarter-point tetrahedral (CQPT), and (c) edge-based quarter-point tetrahedral (EQPT) from global
coordinate system xyz to point p′ inside (d) parent tetrahedral element in natural system ξηζ.

crack front; (ii) tetrahedra which share an edge with the crack front. Accordingly, shifting the

mid-side nodes near the crack front to the quarter-point position generates two types of quarter-

point elements: (i) corner-based quarter-point tetrahedra (CQPT); and (ii) edge-based quarter-

point tetrahedra (EQPT). Consider a tetrahedral element of any type with straight edges as shown

in Fig. C.1a,b,c. The corner node i of these elements has the coordinates (xi, yi, zi), and the point p

is located at (xp, yp, zp) in the global coordinate system xyz. The volume of the tetrahedral element

V is computed by the determinant given in Eq. (C.1). The volumes of smaller internal tetrahedrals

which are generated with one face of the main tetrahedral and the point p are also computed from

the determinants in Eq. (C.2). The point p is inside the tetrahedral element if all the determinants,

or volumes, in Eq. (C.2) are non-negative (Vi ≥ 0).

V =
1
6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

x1 y1 z1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(C.1)
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V1 =
1
6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

xp yp zp 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, V2 =

1
6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xp yp zp 1

x3 y3 z3 1

x4 y4 z4 1

x1 y1 z1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, V3 =

1
6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 y2 z2 1

xp yp zp 1

x4 y4 z4 1

x1 y1 z1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, V4 =

1
6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 y2 z2 1

x3 y3 z3 1

xp yp zp 1

x1 y1 z1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(C.2)

The point p inside any type of tetrahedral element in Fig. C.1a,b,c is mapped to the point

p′ inside the parent tetrahedral element shown in Fig. C.1d. In the case of standard tetrahedral

element in Fig. C.1a, the global coordinates are mapped linearly into the natural ones through Eq.

(C.3). Solving these equations for the natural coordinates gives the coordinates of p′ as volume

fractions in Eq. (C.4):

x = x1 + (x2 − x1)ξ + (x3 − x1)η + (x4 − x1)ζ

y = y1 + (y2 − y1)ξ + (y3 − y1)η + (y4 − y1)ζ

z = z1 + (z2 − z1)ξ + (z3 − z1)η + (z4 − z1)ζ

(C.3)

ξp′ =
V2

V
, ηp′ =

V3

V
, ζp′ =

V4

V
(C.4)

In the case of quarter-point tetrahedrals, however, careful attention is required, as the mapping

is not linear, and the volume fractions in Eq. (C.4) are no longer valid for the computation of

the natural coordinates. In addition, these types of elements have specific orientations, which

need to be taken into account. Assume the orientations shown in Fig. C.1b,c, which renders

the midside nodes 5,7, and 8 for the CQPT moved to the quarter-point position from node 1,

and the nodes and 5,7,9, and 10 for the EQPT moved to the quarter-point position from nodes 1

and 4. The mapping functions are developed as Eqs. (C.5) and (C.6) for the CQPT and EQPT,

respectively. Solving these equations for non-negative natural coordinates, and simplifying the

resulting algebraic equations give the natural coordinates of p′ for CQPT and EQPT through Eqs.
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(C.7) and (C.8), respectively.

x = x1 + (ξ + η + ζ)
[
(x2 − x1)ξ + (x3 − x1)η + (x4 − x1)ζ

]
y = y1 + (ξ + η + ζ)

[
(y2 − y1)ξ + (y3 − y1)η + (y4 − y1)ζ

]
z = z1 + (ξ + η + ζ)

[
(z2 − z1)ξ + (z3 − z1)η + (z4 − z1)ζ

] (C.5)

x = x1 + (ξ + η)
[
(x2 − x1)ξ + (x3 − x1)η

]
+ (x4 − x1)(1 + ξ + η)ζ

y = y1 + (ξ + η)
[
(y2 − y1)ξ + (y3 − y1)η

]
+ (y4 − y1)(1 + ξ + η)ζ

z = z1 + (ξ + η)
[
(z2 − z1)ξ + (z3 − z1)η

]
+ (z4 − z1)(1 + ξ + η)ζ

(C.6)

ξp′ =
V2

√
V(V − V1)

, ηp′ =
V3

√
V(V − V1)

, ζp′ =
V4

√
V(V − V1)

(C.7)

ξp′ =
V2

√
V(V2 + V3)

, ηp′ =
V3

√
V(V2 + V3)

, ζp′ =
V4

V +
√

V(V2 + V3)
(C.8)

Once the local coordinates are known, the displacements of the point p are obtained by in-

terpolating the values of nodal displacements. The displacement gradients and strains are also

determined by substituting the natural coordinates in the so-called B matrix. The stress tensor is

then computed from the strains using σ = Dε, where D is the elasticity matrix containing the

material properties.

Appendix C.2. Triangular element

Due to moving of the mid-side nodes to the quarter-point position at the crack front region, two

types of quarter-points triangles are also developed at the crack surfaces: corner-based quarter-

point triangles (CQPTr) which share one node with the crack front, and edge-based quarter-point

triangles (EQPTr) which share one edge with the crack front. Consider a planar triangular element

of any type with straight edges on the crack surfaces as shown in Fig. C.2a,b,c. The corner

node i of these elements has the coordinates (xi, yi, zi), and the point p lies on the crack surface,

locating at (xp, yp, zp) in the global coordinate system xyz. The normal vector to these elements
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Figure C.2: Mapping of point p inside (a) standard quadratic triangle, (b) corner-based quarter-
point trianlge (CQPTr), and (c) edge-based quarter-point triangle (EQPTr) from global coordinate
system xyz to point p′ inside (d) parent triangle element in natural coordinate system ξη (n̄ = n/|n|).

(n = (nx, ny, nz)) is computed from Eq. (C.9), and the area of the triangular element A is determined

by the determinant given in Eq. (C.10). The area of smaller internal triangles which are generated

with one edge of the main triangle and the point p are also computed from the determinants in

Eq. (C.11). The point p is inside the triangle element if all the determinants in Eq. (C.11) are

non-negative (Ai ≥ 0).

nx =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0

x2 y2 z2 1

x3 y3 z3 1

x1 y1 z1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, ny =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0

x2 y2 z2 1

x3 y3 z3 1

x1 y1 z1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, nz =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1 0

x2 y2 z2 1

x3 y3 z3 1

x1 y1 z1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(C.9)

A =
1

2|n|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

nx ny nz 0

x2 y2 z2 1

x3 y3 z3 1

x1 y1 z1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(C.10)
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A1 =
1

2|n|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

nx ny nz 0

x2 y2 z2 1

x3 y3 z3 1

xp yp zp 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, A2 =

1
2|n|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

nx ny nz 0

xp yp zp 1

x3 y3 z3 1

x1 y1 z1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, A3 =

1
2|n|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

nx ny nz 0

x2 y2 z2 1

xp yp zp 1

x1 y1 z1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(C.11)

Using the shape functions of a quadratic triangular element in Eq. (C.12), the point p inside

any type of triangular elements in Fig. C.2a,b,c is mapped to the point p′ inside the parent triangle

element shown in Fig. C.2d (λ = 1 − ξ − η). Consider two arbitrary unit vectors t1 and t2 which

lie on the plane passing through element face in a way that three vector t1, t2, and n build a right-

handed Cartesian coordinate system x′y′z′ (n = t1 × t2). Also consider the vectors rp = (xp, yp, zp),

and ri = (xi, yi, zi), i = 1, 2, 3. The mapping function of a standard triangular element in Fig. C.2a

from x′y′z′ space to ξη space is therefore obtained as Eq. (C.13). Solving these equations for the

natural coordinates and simplifying the resulting equations using t1×t2 = n/|n| give the coordinates

of p′ as the area fractions in Eq. (C.14):

N1 = λ(2λ − 1) , N2 = ξ(2ξ − 1) , N3 = η(2η − 1) , N4 = 4λξ , N5 = 4ξη , N6 = 4λη (C.12)

x′ = t1.rp = t1.r1 + t1.(r2 − r1)ξ + t1.(r3 − r1)η

y′ = t2.rp = t2.r1 + t2.(r2 − r1)ξ + t2.(r3 − r1)η

z′ = n.rp = n.r1

(C.13)

ξp =
A2

A
, ηp =

A3

A
(C.14)

In the case of quarter-point triangles, special attention is required as the mapping is no longer
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linear and these elements have specific orientations. Assume the orientations shown in Fig. C.2b,c,

which renders the midside nodes 4 and 6 in the CQPTr are moved to the quarter-point position from

node 1, and the nodes 4 and 5 for the EQPTr are moved to the quarter-point positions from nodes 1

and 3, respectively. Using the shape functions in Eq. (C.12), the mapping functions are developed

as Eqs. (C.15) and (C.16) for the CQPTr and EQPTr elements, respectively. Solving these equa-

tions for non-negative natural coordinates and simplifying the resulting algebraic equations give

the natural coordinates of p′ for CQPTr and EQPTr through Eqs. (C.17) and (C.18), respectively.

x′ = t1.rp = t1.r1 +
[
t1.(r2 − r1)ξ + t1.(r3 − r1)η

]
(ξ + η)

y′ = t2.rp = t2.r1 +
[
t2.(r2 − r1)ξ + t2.(r3 − r1)η

]
(ξ + η)

z′ = n.rp = n.r1

(C.15)

x′ = t1.rp = t1.r1 + t1.(r2 − r1)ξ2 + t1.(r3 − r1)(ξ + 1)η

y′ = t2.rp = t2.r1 + t2.(r2 − r1)ξ2 + t2.(r3 − r1)(ξ + 1)η

z′ = n.rp = n.r1

(C.16)

ξp′ =
A2

√
A(A2 + A3)

, ηp′ =
A3

√
A(A2 + A3)

(C.17)

ξp′ =

√
A2

A
, ηp′ =

A3

A +
√

AA2

(C.18)

Once the local coordinates are known, the displacements of the point p are obtained by in-

terpolating the values of nodal displacements using triangle shape functions in Eq. (C.12) and

u =
∑6

i=1 Niui, v =
∑6

i=1 Nivi,w =
∑6

i=1 Niwi. The surface tractions are also computed in the same

way using the values of tractions at the nodes. The nodal tractions may be known through prede-

fined boundary conditions, or the FE results of a contact treatment on the crack surfaces.
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Figure D.1: Configurations of (a) penny-shaped and (b) elliptical cracks.

Appendix D. Stress intensity factors for an embedded penny-shaped/elliptical crack in an

infinite body under uniaxial tension

Analytical solutions for the SIFs of penny-shaped and elliptical cracks embedded in infinite

solids subjected to uniform tension or shear have been derived in Kassir and Sih (1975). Consider

an inclined penny-shaped/elliptical crack embedded in a solid under uniaxial tension σ, as shown

in Fig. 6b. The crack plane is perpendicular to the X1X2 plane, and makes an angle β with the

applied load direction which is oriented along the X2 axis. The normal and shear stress components

on the crack face are σzz = σ sin2 β and σzx = σ sin β cos β. The SIFs of the penny-shaped crack

are therefore given by

KI = 2σ
√

a/π sin2 β

KII =
2σ
√

a/π
2 − ν

sin 2β cos φ

KIII =
2(1 − ν)σ

√
a/π

2 − ν
sin 2β sin φ

(D.1)

where a and ν are the crack radius and Poisson’s ratio, respectively, and φ is the polar angle, as

shown in Fig. D.1a. It should be noted that incorrect solutions for the SIFs of penny-shaped cracks

were reported by Cherepanov (1979). These solutions, which do not contain Poisson’s ratio, were
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incorrectly employed to validate the numerical results by Nikishkov and Atluri (1987b). The SIFs

of the elliptical crack are given by

KI(ω) =
σ
√
πa

E(k)
sin2 β Π(ω)

KII(ω) =
Ψk′σ

√
πa

2Π(ω)
sin 2β cosω

KIII(ω) =
Ψ(1 − ν)σ

√
πa

2Π(ω)
sin 2β sinω

(D.2)

where

Ψ =
k2k′(

k2 − ν
)
E(k) + νk′2K(k)

Π(ω) =
(
k′2 sin2 ω + k′4 cos2 ω

)1/4
(D.3)

In these formulas, k′ = b/a, k2 = 1 − k′2, a and b are the lengths of semi-major and semi-minor

axes of the ellipse (a > b), and K(k) and E(k) are the complete first and second elliptic integrals,

given by

K(k) =

∫ π/2

0

1√
1 − k2 sin2 t

dt

E(k) =

∫ π/2

0

√
1 − k2 sin2 t dt

(D.4)

Angle ω parameterizes the points of the ellipse by the equations x = a cosω, y = b sinω, and

is related to the polar angle φ by k′ tanω = tan φ (see Fig. D.1b). Rewriting Eq. (D.4) in terms of

the polar angle φ gives (Kachanov et al., 2003):
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KI(φ) =
k′σ
√
πa

E(k)
Π1(φ)
Π2(φ)

sin2 β

KII(φ) =
Ψk′2σ

√
πa

2Π1(φ)Π2(φ)
sin 2β cos φ

KIII(φ) =
Ψ(1 − ν)σ

√
πa

2Π1(φ)Π2(φ)
sin 2β sin φ

(D.5)

where

Π1(φ) =
(

sin2 φ + k′4 cos2 φ
)1/4

Π2(φ) =
(
k′2 sin2 φ + k′4 cos2 φ

)1/4 (D.6)

References

References

Abaqus, 2012. ABAQUS User’s Manual, Version 6.12 Documentation. Dassault Systemes Simulia Corp. Providence,

RI, USA.

Anderson, T., 2005. Fracture Mechanics, Fundamentals and Applications. CRC, Boca Raton.

Ayatollahi, M., Aliha, M., Hassani, M., 2006. Mixed mode brittle fracture in PMMA - An experimental study using

SCB specimens. Materials Science and Engineering A 417, 348–356.

Ayatollahi, M., Nejati, M., 2011a. An over-deterministic method for calculation of coefficients of crack tip asymptotic

field from finite element analysis. Fatigue & Fracture of Engineering Materials & Structures 34 (3), 159–176.

Ayatollahi, M., Nejati, M., 2011b. Determination of NSIFs and coefficients of higher order terms for sharp notches

using finite element method. International Journal of Mechanical Sciences 53 (3), 164–177.

Banks-Sills, L., 2010. Update: Application of the Finite Element Method to Linear Elastic Fracture Mechanics.

Applied Mechanics Reviews 63 (2), 020803.

Banks-Sills, L., Sherman, D., 1992. On the computation of stress intensity factors for three-dimensional geometries

by means of the stiffness derivative and J-integral methods. International Journal of Fracture 53 (1), 1–20.

Barsoum, R., 1976. On the use of isoparametric finite elements in linear fracture mechanics. International Journal for

Numerical Methods in Engineering 10, 25–37.

58
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