33,377 research outputs found

    Dark matter cores and cusps in spiral galaxies and their explanations

    Get PDF
    We compare proposed solutions to the core vs cusp issue of spiral galaxies, which has also been framed as a diversity problem, and demonstrate that the cuspiness of dark matter halos is correlated with the stellar surface brightness. We compare the rotation curve fits to the SPARC sample from a self-interacting dark matter (SIDM) model, which self-consistently includes the impact of baryons on the halo profile, and hydrodynamical N-body simulations with cold dark matter (CDM). The SIDM model predicts a strong correlation between the core size and the stellar surface density, and it provides the best global fit to the data. The CDM simulations without strong baryonic feedback effects fail to explain the large dark matter cores seen in low surface brightness galaxies. On the other hand, with strong feedback, CDM simulations do not produce galaxy analogs with high stellar and dark matter densities, and therefore they have trouble in explaining the rotation curves of high surface brightness galaxies. This implies that current feedback implementations need to be modified. We also explicitly show how the concentration-mass and stellar-to-halo mass relations together lead to a radial acceleration relation (RAR) in an averaged sense, and reiterate the point that the RAR does not capture the diversity of galaxy rotation curves in the inner regions. These results make a strong case for SIDM as the explanation for the cores and cusps of field galaxies

    The Bulk Channel in Thermal Gauge Theories

    Get PDF
    We investigate the thermal correlator of the trace of the energy-momentum tensor in the SU(3) Yang-Mills theory. Our goal is to constrain the spectral function in that channel, whose low-frequency part determines the bulk viscosity. We focus on the thermal modification of the spectral function, ρ(ω,T)ρ(ω,0)\rho(\omega,T)-\rho(\omega,0). Using the operator-product expansion we give the high-frequency behavior of this difference in terms of thermodynamic potentials. We take into account the presence of an exact delta function located at the origin, which had been missed in previous analyses. We then combine the bulk sum rule and a Monte-Carlo evaluation of the Euclidean correlator to determine the intervals of frequency where the spectral density is enhanced or depleted by thermal effects. We find evidence that the thermal spectral density is non-zero for frequencies below the scalar glueball mass mm and is significantly depleted for mω3mm\lesssim\omega\lesssim 3m.Comment: (1+25) pages, 6 figure

    Ultraviolet asymptotics of scalar and pseudoscalar correlators in hot Yang-Mills theory

    Full text link
    Inspired by recent lattice measurements, we determine the short-distance (a > omega >> pi T) asymptotics of scalar (trace anomaly) and pseudoscalar (topological charge density) correlators at 2-loop order in hot Yang-Mills theory. The results are expressed in the form of an Operator Product Expansion. We confirm and refine the determination of a number of Wilson coefficients; however some discrepancies with recent literature are detected as well, and employing the correct values might help, on the qualitative level, to understand some of the features observed in the lattice measurements. On the other hand, the Wilson coefficients show slow convergence and it appears uncertain whether this approach can lead to quantitative comparisons with lattice data. Nevertheless, as we outline, our general results might serve as theoretical starting points for a number of perhaps phenomenologically more successful lines of investigation.Comment: 27 pages. v2: minor improvements, published versio

    Realization of quantum walks with negligible decoherence in waveguide lattices

    Get PDF
    Quantum random walks are the quantum counterpart of classical random walks, and were recently studied in the context of quantum computation. Physical implementations of quantum walks have only been made in very small scale systems severely limited by decoherence. Here we show that the propagation of photons in waveguide lattices, which have been studied extensively in recent years, are essentially an implementation of quantum walks. Since waveguide lattices are easily constructed at large scales and display negligible decoherence, they can serve as an ideal and versatile experimental playground for the study of quantum walks and quantum algorithms. We experimentally observe quantum walks in large systems (similar to 100 sites) and confirm quantum walks effects which were studied theoretically, including ballistic propagation, disorder, and boundary related effects

    Modelling localised fracture of reinforced concrete structures

    Get PDF
    This paper presents a robust finite element procedure for simulating the localised fracture of reinforced concrete members. In this new model the concrete member is modelled as an assembly of plain concrete, reinforcing steel bar and bond-link elements. The 4-node quadrilateral elements are used for 2D modelling of plain concrete elements, in which the extended finite element method is adopted to simulate the formation and growth of individual cracks. The reinforcing steel bars are modelled by using a 3-node beam-column element. 2-node bond-link elements are employed for modelling the interaction between plain concrete and reinforcing steel bar elements. It is evident that the nonlinear procedure proposed in this paper can properly model the formation and propagation of individual localised cracks within the reinforced concrete structures. The model presented in this paper enables the researchers and designers to access the integrity of reinforced concrete members under extreme loading conditions by using mesh independent extended finite element method.The support of the Engineering and Physical Sciences Research Council of Great Britain under Grant No. EP/I031553/1

    The ultraviolet limit and sum rule for the shear correlator in hot Yang-Mills theory

    Full text link
    We determine a next-to-leading order result for the correlator of the shear stress operator in high-temperature Yang-Mills theory. The computation is performed via an ultraviolet expansion, valid in the limit of small distances or large momenta, and the result is used for writing operator product expansions for the Euclidean momentum and coordinate space correlators as well as for the Minkowskian spectral density. In addition, our results enable us to confirm and refine a shear sum rule originally derived by Romatschke, Son and Meyer.Comment: 16 pages, 2 figures. v2: small clarifications, one reference added, published versio

    Renormalization of minimally doubled fermions

    Full text link
    We investigate the renormalization properties of minimally doubled fermions, at one loop in perturbation theory. Our study is based on the two particular realizations of Borici-Creutz and Karsten-Wilczek. A common feature of both formulations is the breaking of hyper-cubic symmetry, which requires that the lattice actions are supplemented by suitable counterterms. We show that three counterterms are required in each case and determine their coefficients to one loop in perturbation theory. For both actions we compute the vacuum polarization of the gluon. It is shown that no power divergences appear and that all contributions which arise from the breaking of Lorentz symmetry are cancelled by the counterterms. We also derive the conserved vector and axial-vector currents for Karsten-Wilczek fermions. Like in the case of the previously studied Borici-Creutz action, one obtains simple expressions, involving only nearest-neighbour sites. We suggest methods how to fix the coefficients of the counterterms non-perturbatively and discuss the implications of our findings for practical simulations.Comment: 23 pages, 1 figur
    corecore