102 research outputs found
High-frequency fluctuations in redox conditions during the latest Permian mass extinction
This study was supported financially by NERC Fellowship NE/H016805/2 (to AZ), NERC Standard Grant NE/J023485/2 (to AZ and MC), NSFEAR-1455258 (to CJK). Samples were collected by RJT, who thanks G. Cuny and the Danish National Research Foundation for logistics and financial support.New high-resolution geochemical and sedimentological data from Fiskegrav, East Greenland, reveal fluctuations in marine redox conditions associated with the final disappearance of bioturbating organisms during the latest Permian mass extinction (LPME). Sedimentological observations imply a transgressive episode, and associated geochemical evidence for decreasing oxygen availability and the establishment of persistently ferruginous (Fe2 +-rich) conditions implies the shoreward migration of oxygen deficient waters. The long-term decline in dissolved oxygen (DO) availability could have been exacerbated by increasing water temperatures, reducing the solubility of oxygen and promoting thermal stratification. Mixing of the water column could have been further inhibited by freshwater influxes that could have generated salinity contrasts that reinforced thermal stratification. Enhanced runoff could also have increased the delivery of nutrients to the marine shelf, stimulating biological oxygen demand (BOD). During the transition to persistently ferruginous conditions we identify intervals of intermittent benthic meiofaunal recolonization, events that we attribute to small transient increases in DO availability. The mechanism controlling these fluctuations remains speculative, but given the possible centennial- to millennial-scale frequency of these changes, we hypothesise that the mid-latitude setting of Fiskegrav during the Late Permian was sensitive to changes in atmospheric circulation patterns, which may have influenced local precipitation and intermittently modulated some of the processes promoting anoxia.Publisher PDFPeer reviewe
Mantle sources and magma evolution in Europe's largest rare earth element belt (Gardar Province, SW Greenland) : new insights from sulfur isotopes
This work is a contribution to the HiTech AlkCarb project and was funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 689909. W.H. also acknowledges support from a UKRI Future Leaders Fellowship (MR/S033505/1). A.J.B. is funded by the NERC National Environment Isotope Facility award (NE/S011587/1) and the Scottish Universities Environmental Research Centre.Alkaline igneous complexes are often rich in rare earth elements (REE) and other metals essential for modern technologies. Although a variety of magmatic and hydrothermal processes explain the occurrence of individual deposits, one common feature identified in almost all studies, is a REE-enriched parental melt sourced from the lithospheric mantle. Fundamental questions remain about the origin and importance of the mantle source in the genesis of REE-rich magmas. In particular, it is often unclear whether localized enrichments within an alkaline province reflect heterogeneity in the mantle source lithology (caused by prior subduction or plume activity) or variations in the degree of partial melting and differentiation of a largely homogeneous source. Sulfur isotopes offer a means of testing these hypotheses because they are unaffected by high temperature partial melting processes and can fingerprint different mantle sources. Although one must be careful to rule out subsequent isotope fractionation during magma ascent, degassing and crustal interactions. Here, we present new S concentration and isotope (δ34S) measurements, as well as a compilation of major and trace element data, for a suite of alkaline magmatic units and crustal lithologies from the Mesoproterozoic Gardar Province. Samples span all phases of Gardar magmatism (1330–1140 Ma) and include regional dykes, rift lavas and the alkaline complexes Motzfeldt and Ilímaussaq, which represent two of Europe's largest REE deposits. We show that the vast majority of our 115 samples have S contents >100 ppm and δ34S of −1 to 5‰. Only 8 samples (with low S contents, <100 ppm) show evidence for crustal interactions, implying that the vast majority of Gardar melts preserve the S isotopic signature of their magma source. Importantly, samples from across the Gardar Province δ34S have above the canonical mantle range (≤−1.4‰) and therefore require recycled surface S in their mantle source. Elevated values are explained by a period of Andean-style subduction and mantle metasomatism which took place ∼500 Ma before rift onset and are also supported by trace elements signatures (e.g. Ba/La) which match modern subduction zones. Comparing the various generations of Gardar magmas, we find that δ34S values, large ion lithophile elements (K, Ba, P) and selective incompatible elements (Nb and light REE) are particularly enriched in the Late Gardar dykes, alkaline complexes and clusters of silica-undersaturated dykes spatially associated with the alkaline complexes. These data indicate that subduction-related metasomatism of the Gardar mantle was spatially heterogeneous, and that alkaline complexes are sourced from localized mantle domains highly enriched in 34S, REE, alkalis and volatiles (particularly, F). Since alkalis and volatiles play an essential role in driving extreme differentiation of alkaline melts and fluids, we suggest the co-location of these species plus incompatible metals at high concentrations in the lithospheric mantle is a critical first-step in the genesis of a world-class alkaline REE deposit. S isotopes are powerful tools for identifying enriched mantle domains and the sources of mineralized alkaline igneous bodies.Publisher PDFPeer reviewe
Recommended from our members
Sulfur isotopes as biosignatures for Mars and Europa exploration
Sulfur (S) isotopes are used to trace metabolic pathways associated with biological S-cycling in past and present environments on Earth. These pathways (sulfate reduction, sulfur disproportionation, and sulfide oxidation) can produce unique S isotope signals that provide insight into biogeochemical S-cycling. The S cycle is also relevant for extraterrestrial environments and processes. On early Mars, sulfur existed in different redox states and was involved in a large range of surface processes (e.g., volcanic, atmospheric, hydrothermal, and aqueous brines). Sulfur compounds have also been detected on Europa's icy moon surface, with the S cycle implicated in Europa's surface and ocean geochemistry. Given the well-established utility of S isotopes in providing a record for past life on Earth, S isotopes are an valuable tool for identifying biosignatures on Mars and Europa. Here, we review S isotopes as a biosignature, in light of two recent advances in understanding the S cycle in both Mars and Europa: (i) the measurements of δ34S in situ at Gale Crater and quadruple S isotopes (QSI) in Martian meteorites, and (ii) the identification of a likely exogenous origin of sulfur on Europa's surface. We discuss important considerations for unravelling QSI biosignatures in Martian environments, considering high and low sulfur environments, atmospheric S-MIF signals, and metabolic energy-limited niches. For Europa, we describe the potential for S isotopes to probe biogeochemistry, and identify key knowledge gaps to be addressed in order to unlock S isotopic tools for future life detection efforts. The resulting picture demonstrates how S isotopes will be a valuable tool for Mars Sample Return, and how future missions can focus on the search for environments where QSI signatures of microbial S-cycling processes have a greater chance of being preserved. For Europa, the first step will be to account for the S isotope composition of the various S pools, to recognise or rule out non-biologically mediated S isotope values, with a focus on experimental examination of potential S isotope signatures from exogenous sulfur sources.Thematic collection: This article is part of the Sulfur in the Earth system collection available at: https://www.lyellcollection.org/cc/sulfur-in-the-earth-syste
Recommended from our members
Comparison among five hydrodynamic codes with a diverging-converging nozzle experiment
A realistic open-cycle gas-core nuclear rocket simulation model must be capable of a self-consistent nozzle calculation in conjunction with coupled radiation and neutron transport in three spatial dimensions. As part of the development effort for such a model, five hydrodynamic codes were used to compare with a converging-diverging nozzle experiment. The codes used in the comparison are CHAD, FLUENT, KIVA2, RAMPANT, and VNAP2. Solution accuracy as a function of mesh size is important because, in the near term, a practical three-dimensional simulation model will require rather coarse zoning across the nozzle throat. In the study, four different grids were considered. (1) coarse, radially uniform grid, (2) coarse, radially nonuniform grid, (3) fine, radially uniform grid, and (4) fine, radially nonuniform grid. The study involves code verification, not prediction. In other words, the authors know the solution they want to match, so they can change methods and/or modify an algorithm to best match this class of problem. In this context, it was necessary to use the higher-order methods in both FLUENT and RAMPANT. In addition, KIVA2 required a modification that allows significantly more accurate solutions for a converging-diverging nozzle. From a predictive point of view, code accuracy with no tuning is an important result. The most accurate codes on a coarse grid, CHAD and VNAP2, did not require any tuning. Their main comparison among the codes was the radial dependence of the Mach number across the nozzle throat. All five codes yielded a very similar solution with fine, radially uniform and radially nonuniform grids. However, the codes yielded significantly different solutions with coarse, radially uniform and radially nonuniform grids. For all the codes, radially nonuniform zoning across the throat significantly increased solution accuracy with a coarse mesh. None of the codes agrees in detail with the weak shock located downstream of the nozzle throat, but all the codes indicated the presence of a weak downstream shock
Unraveling biogeochemical phosphorus dynamics in hyperarid Mars‐analogue soils using stable oxygen isotopes in phosphate
With annual precipitation less than 20 mm and extreme UV intensity, the Atacama Desert in northern Chile has long been utilized as an analogue for recent Mars. In these hyperarid environments, water and biomass are extremely limited, and thus, it becomes difficult to generate a full picture of biogeochemical phosphate‐water dynamics. To address this problem, we sampled soils from five Atacama study sites and conducted three main analyses—stable oxygen isotopes in phosphate, enzyme pathway predictions, and cell culture experiments. We found that high sedimentation rates decrease the relative size of the organic phosphorus pool, which appears to hinder extremophiles. Phosphoenzyme and pathway prediction analyses imply that inorganic pyrophosphatase is the most likely catalytic agent to cycle P in these environments, and this process will rapidly overtake other P utilization strategies. In these soils, the biogenic δ18O signatures of the soil phosphate (δ18OPO4) can slowly overprint lithogenic δ18OPO4 values over a timescale of tens to hundreds of millions of years when annual precipitation is more than 10 mm. The δ18OPO4 of calcium‐bound phosphate minerals seems to preserve the δ18O signature of the water used for biogeochemical P cycling, pointing toward sporadic rainfall and gypsum hydration water as key moisture sources. Where precipitation is less than 2 mm, biological cycling is restricted and bedrock δ18OPO4 values are preserved. This study demonstrates the utility of δ18OPO4 values as indicative of biogeochemical cycling and hydrodynamics in an extremely dry Mars‐analogue environment
Recommended from our members
Evolution of the crustal phosphorus reservoir
The release of phosphorus (P) from crustal rocks during weathering plays a key role in determining the size of Earth's biosphere, yet the concentration of P in crustal rocks over time remains controversial. Here, we combine spatial, temporal, and chemical measurements of preserved rocks to reconstruct the lithological and chemical evolution of Earth's continental crust. We identify a threefold increase in average crustal P concentrations across the Neoproterozoic-Phanerozoic boundary (600 to 400 million years), showing that preferential biomass burial on shelves acted to progressively concentrate P within continental crust. Rapid compositional change was made possible by massive removal of ancient P-poor rock and deposition of young P-rich sediment during an episode of enhanced global erosion. Subsequent weathering of newly P-rich crust led to increased riverine P fluxes to the ocean. Our results suggest that global erosion coupled to sedimentary P-enrichment forged a markedly nutrient-rich crust at the dawn of the Phanerozoic
Recommended from our members
Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth
The Neoproterozoic Earth was punctuated by two low-latitude Snowball Earth glaciations. Models permit oceans with either total ice cover or substantial areas of open water. Total ice cover would make an anoxic ocean likely, and would be a formidable barrier to biologic survival. However, there are no direct data constraining either the redox state of the ocean or marine biological productivity during the glacials. Here we present iron-speciation, redox-sensitive trace element, and nitrogen isotope data from a Neoproterozoic (Marinoan) glacial episode. Iron-speciation indicates deeper waters were anoxic and Fe-rich, while trace element concentrations indicate surface waters were in contact with an oxygenated atmosphere. Furthermore, synglacial sedimentary nitrogen is isotopically heavier than the modern atmosphere, requiring a biologic cycle with nitrogen fixation, nitrification and denitrification. Our results indicate significant regions of open marine water and active biologic productivity throughout one of the harshest glaciations in Earth history
Onset of the aerobic nitrogen cycle during the Great Oxidation Event
The rise of oxygen on the early Earth (about 2.4 billion years ago)1 caused a reorganization of marine nutrient cycles2, 3, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records4 lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope (15N/14N) values from approximately 2.31-billion-year-old shales5 of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event)6. Our data fill a gap of about 400 million years in the temporal 15N/14N record4 and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton
A theoretical and experimental investigation of smooth- and wavy ice layers in laminar and turbulent flow inside an asymmetrically cooled parallel-plate channel
The present paper shows the adaption of the numerical model originally developed by Weigand and Beer [14] for calculating steady-state ice layers inside an asymmetrically cooled parallel-plate channel. The investigation shows the characteristics in ice formation behaviour due to asymmetrically cooled walls. Further, a simple analytical model is presented for calculating smooth ice layers in turbulent flow. The study is supported by own measurements of the freezing fronts inside an asymmetrically cooled channel. A comparison between theoretical calculations and measurements shows generally good agreement.Die vorliegende Arbeit beschreibt die Anwendung des von Weigand und Beer [14] entwickelten, numerischen Modells zur Vorhersage von Eisschichten in einem ebenen, asymmetrisch gekühlten Kanal. Die Studie befaßt sich mit den Unterschieden in der Eisschichtbildung aufgrund der asymmetrisch gekühlten Kanalwände. Weiterhin wird ein einfaches Verfahren angegeben, mit dem sich die Gestalt von glatten Eisschichten bei turbulenter Strömung und asymmetrischer Kühlung sehr einfach berechnen läßt. Die analytisch und numerisch gewonnenen Resultate werden anschließend mit eigenen Messungen von Eisschichten verglichen, wobei eine im allgemeinen gute Übereinstimmung zwischen Theorie und Experiment zu beobachten ist
- …