1,496 research outputs found

    Single and double slit scattering of wave packets

    Full text link
    The scattering of wave packets from a single slit and a double slit with the Schr\"odinger equation, is studied numerically and theoretically. The phenomenon of diffraction of wave packets in space and time in the backward region, previously found for barriers and wells, is encountered here also. A new phenomenon of forward diffraction that occurs only for packets thiner than the slit, or slits, is calculated numerically as well as, in a theoretical approximation to the problem. This diffraction occurs at the opposite end of the usual diffraction phenomena with monochromatic waves.Comment: Latex format, 35 pages, 15 eps (some colored) figure

    Comparing Catalysts of the Direct Synthesis of Hydrogen Peroxide in Organic Solvent: is the Measure of the Product an Issue?

    Get PDF
    The direct synthesis of hydrogen peroxide has been for about 20 years a hot topic in \u201cgreen\u201d catalysis. Several methods, which are well established to measure the concentration of hydrogen peroxide in water are also applied to the analysis of reaction mixtures from the direct synthesis of H2O2. However, this step could not be always straightforward, because these mixtures contain almost invariably organic solvents and, sometimes, selectivity enhancers which can interfere in some, at the least, of the most popular titrimetric methods. This work presents a comparative investigation of iodometry, cerimetry, permanganometry (titrimetric methods) and spectrophotometric analysis of TiIV/H2O2 adduct, as applied to analysis of hydrogen peroxide produced by its direct synthesis. They account for more than 90 % of the competent literature since 2000. Their pros and cons are highlighted to provide a guideline for the choice of the best possible method of analysis and for the comparison of catalytic results assessed in different ways in the context of the direct synthesis of hydrogen peroxide

    A local density functional for the short-range part of the electron-electron interaction

    Full text link
    Motivated by recent suggestions --to split the electron-electron interaction into a short-range part, to be treated within the density functional theory, and a long-range part, to be handled by other techniques-- we compute, with a diffusion Monte Carlo method, the ground-state energy of a uniform electron gas with a modified, short-range-only electron-electron interaction \erfc(\mu r)/r, for different values of the cutoff parameter μ\mu and of the electron density. After deriving some exact limits, we propose an analytic representation of the correlation energy which accurately fits our Monte Carlo data and also includes, by construction, these exact limits, thus providing a reliable ``short-range local-density functional''.Comment: 7 pages, 3 figure

    Hall magnetohydrodynamics of partially ionized plasmas

    Full text link
    The Hall effect arises in a plasma when electrons are able to drift with the magnetic field but ions cannot. In a fully-ionized plasma this occurs for frequencies between the ion and electron cyclotron frequencies because of the larger ion inertia. Typically this frequency range lies well above the frequencies of interest (such as the dynamical frequency of the system under consideration) and can be ignored. In a weakly-ionized medium, however, the Hall effect arises through a different mechanism -- neutral collisions preferentially decouple ions from the magnetic field. This typically occurs at much lower frequencies and the Hall effect may play an important role in the dynamics of weakly-ionised systems such as the Earth's ionosphere and protoplanetary discs. To clarify the relationship between these mechanisms we develop an approximate single-fluid description of a partially ionized plasma that becomes exact in the fully-ionized and weakly-ionized limits. Our treatment includes the effects of ohmic, ambipolar, and Hall diffusion. We show that the Hall effect is relevant to the dynamics of a partially ionized medium when the dynamical frequency exceeds the ratio of ion to bulk mass density times the ion-cyclotron frequency, i.e. the Hall frequency. The corresponding length scale is inversely proportional to the ion to bulk mass density ratio as well as to the ion-Hall beta parameter.Comment: 11 page, 1 figure, typos removed, numbers in tables revised; accepted for publication in MNRA

    Alloantigen-induced human lymphocytes rendered nonresponsive by a combination of anti-CD80 monoclonal antibodies and Cyclosporin-A suppress mixed lymphocyte reaction in vitro

    Get PDF
    Induction of a state of long-term, alloantigen-specific T cell nonresponsiveness has significant implications for human transplantation. It has been previously described that alloantigen-specific anergy may be induced by addition of cyclosporin-A together with anti-CD80(B7-1) mAb to a MLR. In this study we endeavored to verify whether alloantigen-induced PBL rendered anergic by the addition of a combination of anti-B7 mAb and cyclosporin-A during a MLR had a suppressive effect when added to autologous lymphocytes activated in MLR. We found that: 1) the addition of cells rendered anergic by this procedure to a MLR suppress both proliferative and cytotoxic response of autologous responsive PBL to either the same or third-party stimulator cells; 2) the suppressive effect is limited to alloantigen-induced T cell activation, as addition of anergic cells does not influence mitogen- or antigen-induced proliferation of autologous responsive T cells; 3) nonresponsiveness of suppressed cells cannot be reversed by either subsequent restimulation with allogeneic cells or addition of exogenous IL-2 to the cultures; 4) the suppressive effect is apparently not due to secretion of anergic cell-derived soluble factors, but it seems to be dependent on cell-cell contact between anergic, responsive, and stimulator cells. These data suggest that: 1) the delivery of a direct signal mediated by anergic lymphocytes through a cell-cell contact is likely to be the mechanism responsible for the suppressive effect here described; 2) anergic cells may propagate alloantigen-specific tolerance to potentially responsive autologous lymphocytes. Preliminary experiments indicate that anti-CD86(B7-2) mAb may play a similar role in the generation of alloantigen-induced nonresponsiveness

    The combined cartilage growth – calcification patterns in the wing-fins of Rajidae (Chondrichthyes): A divergent model from endochondral ossification of tetrapods

    Get PDF
    The relationship between cartilage growth – mineralization patterns were studied in adult Rajidae with X-ray morphology/morphometry, undecalcified resin-embedded, heat-deproteinated histology and scanning electron microscopy. Morphometry of the wing-fins, nine central rays of the youngest and oldest specimens documented a significant decrement of radials mean length between inner, middle and outer zones, but without a regular progression along the ray. This suggests that single radial length growth is regulated in such a way to align inter-radial joints parallel to the wing metapterygia curvature. Trans-illumination and heat-deproteination techniques showed polygonal and cylindrical morphotypes of tesserae, whose aligned pattern ranged from mono-columnar, bi-columnar, and multi-columnar up to the crustal-like layout. Histology of tessellated cartilage allowed to identify of zones of the incoming mineral deposition characterized by enhanced duplication rate of chondrocytes with the formation of isogenic groups, whose morphology and topography suggested a relationship with the impending formation of the radials calcified column. The morphotype and layout of radial tesserae were related to mechanical demands (stiffening) and the size/mass of the radial cartilage body. The cartilage calcification pattern of the batoids model shares several morphological features with tetrapods' endochondral ossification, that is, (chondrocytes' high duplication rate, alignment in rows, increased volume of chondrocyte lacunae), but without the typical geometry of the metaphyseal growth plates

    Automatic Discrimination of Laughter Using Distributed sEMG

    Get PDF
    Laughter is a very interesting non-verbal human vocalization. It is classified as a semi voluntary behavior despite being a direct form of social interaction, and can be elicited by a variety of very different stimuli, both cognitive and physical. Automatic laughter detection, analysis and classification will boost progress in affective computing, leading to the development of more natural human-machine communication interfaces. Surface Electromyography (sEMG) on abdominal muscles or invasive EMG on the larynx show potential in this direction, but these kinds of EMG-based sensing systems cannot be used in ecological settings due to their size, lack of reusability and uncomfortable setup. For this reason, they cannot be easily used for natural detection and measurement of a volatile social behavior like laughter in a variety of different situations. We propose the use of miniaturized, wireless, dry-electrode sEMG sensors on the neck for the detection and analysis of laughter. Even if with this solution the activation of specific larynx muscles cannot be precisely measured, it is possible to detect different EMG patterns related to larynx function. In addition, integrating sEMG analysis on a multisensory compact system positioned on the neck would improve the overall robustness of the whole sensing system, enabling the synchronized measure of different characteristics of laughter, like vocal production, head movement or facial expression; being at the same time less intrusive, as the neck is normally more accessible than abdominal muscles. In this paper, we report laughter discrimination rate obtained with our system depending on different conditions
    corecore