
Automatic discrimination of laughter using 

distributed sEMG 
 

 

S. Cosentino, S. Sessa, W. Kong, D. Zhang, A. Takanishi 

Faculty of Science and Engineering,   

Waseda University 

Tokyo, Japan 

N. Bianchi-Berthouze, 

UCL Interaction Centre,  

University College of London (UCL)  

London, UK 

 
Abstract— Laughter is a very interesting non-verbal human 

vocalization. It is classified as a semi voluntary behavior despite 

being a direct form of social interaction, and can be elicited by a 

variety of very different stimuli, both cognitive and physical. 

Automatic laughter detection, analysis and classification will 

boost progress in affective computing, leading to the development 

of more natural human-machine communication interfaces. 

Surface Electromyography (sEMG) on abdominal muscles or 

invasive EMG on the larynx show potential in this direction, but 

these kinds of EMG-based sensing systems cannot be used in 

ecological settings due to their size, lack of reusability and 

uncomfortable setup. For this reason, they cannot be easily used 

for natural detection and measurement of a volatile social 

behavior like laughter in a variety of different situations. We 

propose the use of miniaturized, wireless, dry-electrode sEMG 

sensors on the neck for the detection and analysis of laughter. 

Even if with this solution the activation of specific larynx muscles 

cannot be precisely measured, it is possible to detect different 

EMG patterns related to larynx function. In addition, integrating 

sEMG analysis on a multisensory compact system positioned on 

the neck would improve the overall robustness of the whole 

sensing system, enabling the synchronized measure of different 

characteristics of laughter, like vocal production, head movement 

or facial expression; being at the same time less intrusive, as the 

neck is normally more accessible than abdominal muscles. In this 

paper, we report laughter discrimination rate obtained with our 

system depending on different conditions. 

Keywords—laughter; EMG; electromyography; affective 

computing; laughter computing. 

I. INTRODUCTION 

Laughter is an universally recognizable non-verbal human 
social communication signal [1], and has been object of study 
in various fields, from psychology and psychiatry [2]–[5], to 
medicine and neuroscience [6]–[9], and, more recently, 
computer science [10], [11]. 

In fact, a thorough understanding of laughter as one of the 
mechanisms at the basis of natural human social interaction 
and communication would lead to a dramatic improvement of 
human-machine communication and possible new applications.  

However, while verbal communication is usually direct, 
and it is processed on a conscious level, non-verbal 

communication is usually processed at an unconscious level 
[12], complementing and enriching direct interchanges 
carrying additional information on the emotional state of the 
subjects. Moreover, non-verbal social communication signals 
cannot be voluntarily controlled, performed or suppressed [1], 
and are multimodal, usually involving the coordination of 
different groups of muscles, and the alteration of several 
physiological parameters [13]. The ability to process and 
understand non-verbal communication feedback is paramount 
to calibrate the level of exchange among interacting partners, 
and to orient the conversation in the desired direction, ensuring 
that the message is received according to one’s endeavor.  

There is already a vast body of literature on laughter 
detection and classification, using standard noninvasive 
methods like audio and video data processing [14]–[22]. 
However, there are situations in which audio and video 
systems cannot be used or cannot be considered reliable, e.g. 
long-term laughter monitoring, multiple interaction, or noisy 
environment. The aim of this paper is then to present the 
development of a new ecological EMG-based sensor system 
for measuring, recording and classifying laughing real-time 
during prolonged social natural interaction activities. This 
system could be used as an alternative or as an auxiliary 
laughter detection and classification system in those situations 
in which other less invasive systems cannot be used. In 
addition, this system could be used to clarify the muscles 
activities during laughter and help drawing a physical and 
physiological model of laughter, as well as building a body 
action code system for muscles-emotion. 

The paper is organized as following: Section II describes 
the theoretical and practical grounds on which our system and 
sensing methodology are based, the choices in design and 
implementation, and the experiment setup to collect laughter 
data among other vocalization; Section III describes the results 
of the experiments; Section IV discusses those results; and 
Section V presents the conclusions and future work. 

II. MATERIAL AND METHODS 

Several muscles are simultaneously activated to produce 
laughter: the ones related to sound production (respiratory 
muscles, larynx apparatus); the ones related to expression 
(facial muscles); and some other as byproduct of the intensity 
of the emotional arousal (arm gesturing, posture alterations) 
[13].  

This research has been supported by the JSPS Grant-in-Aid for Young 

Scientists (Wakate B) [25750259] and [15K21437], and MEXT, Japan. It has 

been also partially supported by a grant by STMicroelectronics, which also 
provided the core sensors and the microcontrollers.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79499855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Different types of sensor systems have been used to detect 
and quantify laughing, depending on the measured parameters 
[23]. The most ecological systems are audio and video based, 
but they present several drawbacks: with audio systems it is 
difficult to capture individual data during interactions among 
multiple subjects, and video data is normally not sufficient to 
properly detect and classify laughing. Moreover, both these 
methods might raise privacy issues. Motion capture systems, 
like Vicon, also are a valid alternative to record reliable data in 
an ecological environment, but those systems are normally 
very expensive, need a long setup and the markers must always 
be in sight. On the other hands, several studies successfully 
detected and measured laughing data using EMG in clinical 
settings. 

A. EMG 

We decided to use the EMG prototype designed by our 
group named WB-EMG (Waseda Bioinstrumentation system 
EMG). Our sensor specifications, shown in Fig. 1, were 
selected based on ISEK [24] and SENIAM standards [25]. The 
surface area of active electrodes is a very important factor and 
overall size of electrodes is critical for a good Signal Noise 
Rejection (SNR) [26]. The sensor unit uses electrodes of 
cylindrical shape of 2 mm height and 6 mm diameter, with a 
rounded edge of 0.5mm radius, placed along a line with an 
inter-electrode distance (IED) of 10mm, as shown in Fig. 1. 
Two of the electrodes are coupled electrodes for EMG local 
recording, whilst the third one is for reference, removing the 
need for a separated reference electrode. We also used several 
techniques to obtain an appropriate AD coupling, and common 
mode noise rejection as described in [27].  

B. Criteria to Select the Best Electrodes Position 

Beyond the fact that there is a growing literature showing 
that EMG can be used to discriminate between emotional states 
[28], [29], several studies confirmed the validity of EMG to 
detect laughter (see Fig. 2). Agostoni [30], measured 
respiration phases, muscle activation and transthoracic 
pressures with invasive EMG and a gastric balloon, and was 
able to classify laughing from other expiratory activities like 
coughing, and singing. Luschei [31] and Titze [32], using 
invasive intramuscular EMG, analyzed the dynamics of larynx 
during laughter. Kimura [33], and Kimata [34] successfully 
measured laughter with non-invasive sEMG on the xyphoid 
process, a traditional position to measure diaphragmatic 
activities for clinical respiration measurements. Strohl, [35] 
and Hoit, [36], instead, using sEMG on abdominal and thoracic 

muscles to discriminate several respiratory and non-respiratory 
activities, found that better data are acquired on lower 
abdominal muscles. Following their lead, Fukushima [37] and 
Cosentino et al. [38] preferred abdominal muscles, measuring 
laughter with sEMG on the upper obliquus and Rectus 
Abdominis.  

However, even if sEMG are less invasive, they might be 
uncomfortable to wear due to the required skin preparation, 
and not convenient due to the position. Also, depending on the 
position, they might be integrated in a more robust 
multisensory system. So we propose an EMG based system to 
detect, measure, and classify laughter on the neck, which is a 
position generally free and easily accessible, and where the 
sEMG can be integrated with a microphone to detect also the 
sound production associated with laughter. The full system is 
shown in Fig. 3. 

Following the lead of Luschei and Titze, we chose to 
measure the electromyographic activity of the larynx and 

 

Parameter Value 

Gain 1400 

Weight 13.4 g 

Sampling Rate 1 KHz 

Resolution 12-bit 

Lower cutoff frequency 20Hz 

Higher cutoff frequency 450Hz 

CMRR >90dB 

Fig. 1. WB-EMG unit and its principal characteristics 

 

(a) Larynx activity 
 

Luschei: all 
Titze: LCA, TA, PCA 

 

(b) Respiration 

activity 
 

Strohl: UL, LL, MM 
Hoit: UL, LL, UA,  

MA, LA 

Kimura:  UL, XY, RA 
Kimata: XY 

Fukushima: UL 

Cosentino: UL, XY, RA 
 

Fig. 2. EMG electrodes positions for laughter measurement 

 

Fig. 3. WB-EMG sensor system 



surrounding muscles during various vocalizations and 
respiratory activities. The major difference is that we will not 
be able to measure electromyographic activity of specific 
muscles of the larynx, because those muscles are too deep and 
small for our EMG-based system. For this reason, the purpose 
of the preliminary study is detecting and classifying 
electromyographic mixed patterns related to different 
physiological activities. 

C. Experimental Setup 

The experiments were carried out at University College of 
London with ten healthy volunteers, of several nationalities, 4 
males and 6 females, average age of 34.3 years old (18 to 63 
years old), with no invasive devices and without any risk for 
the health of the participants. The right to privacy of the 
subjects has been fully respected, the subjects have been 
extensively informed and asked for written consent to the 
experiment, also taking into account their age and their health 
conditions, according to the existing national and international 
laws and regulations. Permission from the responsible Ethical 
Committee has been requested and obtained prior to these 
experiments.  

Four synchronized WB-EMGs connected via CAN bus 
acquired data at a sample rate of 1 kHz (see Fig. 3). Two 
EMGs were placed underneath the subject's chin, over the 
sternocleidomastoid muscle using medical grade tape on the 
left (LS) and right (RS) side. Two EMGs were placed on the 
abdominal muscles (LL and LA), in the same place of previous 
successful studies, as control data stream. The sensors were 
interconnected with special elastic electrical cables, provided 
by Asahi Kasei fibers corporation, to maximize comfort. For 
data communication a Central Board polls all the sensors 
connected to the CAN bus, packages the data and transmits to 
the PC over Bluetooth. The data is recorded in the PC and post-
processed in MATLAB. Both electrodes and skin at the sites 
were cleansed with common alcohol gel before positioning the 
electrodes.  

Following the work by McKeown et al. [39] on laughter 
elicitation techniques, six subjects watched humorous videos of 
their choice (video stimulus mode), while four subjects 
interacted casually with a close friend, telling humorous 
anecdotes, talking about funny experiences, or playing the 
yes/no game (interaction mode). Fig. 4 describe the full 
procedure. The subjects wore the sensors and sat upright on a 
chair in a comfortable room, alone and with a headset in the 
case of humorous video stimulus, or together with a friend in 
the case of humorous interaction. The subjects were also asked 
to produce several specific types of vocalizations, listed in the 
next section. The EMG electrode placement and signal quality 
was verified by having the subjects talk and move for a few 
seconds before recording. 

D. Data Labelling 

Five hours of data were collected. One of the researchers 
segmented manually the data according to the following 
classes of events: 

• Talking / Reading 

• Laughter 

• Fake laughter (Volitional laughter [40], [41] ) 

• Yawning 

• Coughing 

• Throat clearing 

• Other action (none of the above) 

The database with labeled data will be soon available on-
line under the name of “UCL-WASEDA database”. 

III. MODELING AND RESULTS 

The aim of the study was to investigate the possibility to 
automatize the discrimination of laughter events from the other 
types of event listed in the previous section. The two 
conditions, video watching and friend interaction were 
modelled separately. 

A. Feature Extraction and Modeling 

The post processing has been performed with a MATLAB 
script that automatically loaded the raw EMG data files and 
arranged them into separate data sets according to the different 
action performed. A sliding window filter has been applied to 
each labeled EMG channel data (window step = 100ms, 
window length = 500ms), and features have been extracted to 
be used for discrimination between different vocal expressions.  

Several candidate features, both in time and frequency 
domain, have been considered [42]. Among the considered 
features, the best results were obtained with the following 
subset of features: 

• RMS (Root Mean Square) – the square root of the 
arithmetic mean of the squares of the samples  

• Maximum Peak-to-Peak – the maximum excursion 
between highest and lowest amplitude value 

in the time domain, and: 

• Mean – the mean frequency of the windowed signal 

• Mean power – mean of the values of the Power 
Spectral Density of the windowed signal 

• Bandwidth – the difference between the upper and 
lower frequencies of the windowed signal 

 

 

Fig. 4. Experiment setup. 



 

in the frequency domain. The features were all normalized 
in range with respect to their respective maximum and 
minimum value obtained during all the set of experiments.  

The same feature extraction and analysis have been 
performed on each different electrode site and the results have 
been compared.  

Surprisingly, the two abdominal EMG data streams were 
highly variable depending on the subject and proved 
completely unreliable in this experiment, as opposed to the 
ones on the neck. This might be due to several causes, which 
have still to be investigated. For example, it might be that the 
average Body Mass Index (BMI) of the subjects (Japanese vs 
UK population) was much higher than in our previous 
experiments [38], so that the EMG on the abdominal region 
was not able to record proper muscle activation data. Also, it 
could be that the size of the muscles and the skin conductivity 
caused the saturation of the collected EMG signal. Constantly 
saturated signals cannot be used because give no information 
on muscle activation. In Table I the quality of the collected 
data stream for each location and for each subject is shown. 
Refer to Fig. 4 for the electrode site. 

 

For this reason, the presented statistical analysis has been 
performed only on the neck EMG data streams, which were in 
any case our main target. Physiological activity classification 
has been performed on the basis of Principal Component 
Analysis (PCA) using two different classifiers, for performance 
comparison: 

• Linear Discriminant (LD), for both binary 
(laughter/not laughter) and multi class classification 

• Support Vector Machine (SVM), with a linear kernel, 
for specific binary classification laughter/not laughter.  

For binary classification laughter/not laughter, spontaneous 
laughter vs other events, including volitional laughter, is 
intended. 10-fold Cross Validation technique [43] has been 
used to validate the results of the classification. Results were 
calculated for each single subject and globally, in a subject-
independent schema, on the full database. Depending on the 
classification conditions, classification results varied sensibly.  

B. Classification Results 

The performances of the classifiers have been measured in 
terms of Success rate, Error rate, Sensitivity and Specificity of 
the classifier with respect to Laughter class.  

Sensitivity, also called the true positive rate (TP), or the 
recall rate in some fields, refers to the proportion of actual 
positive samples correctly classified as positive, in a binary 
classification test.  

Specificity, also called the true negative rate (TN), refers to 
the proportion of negative samples correctly classified as 
negative. 

If we identify as TP, FP (False Positive), TN, and FN 
(False Negative) the total numbers of true positives, false 
positives, true negatives, and false negatives, respectively, we 
can define: 

 
(1) 

 
(2) 

 
(3) 

Classification results are shown in Table II, Table III, and 
Table IV. With “Global”, intersubject classification is 
intended; all the data collected and labeled from all the subjects 
have been clustered according to their label in a single dataset 
for classification. 

Results underlined are the ones worse than the statistical 

probability of correct rate by random classification 

(baseline=0.142 for 7 classes, baseline=0.167 for 6 classes, 

and baseline=0.5 for binary classification).  

TABLE II  

CLASSIFICATION RESULTS: LD 7 CLASSES 

Subject Mode 
Data 

samples 

Correct 

Rate 
Sensitivity Specificity 

1  9398 0.607 0.084 0.906 

2  11525 0.031 0.456 0.550 

3  10604 0.234 0.081 0.956 

4 I 9837 0.311 0.170 0.923 

5 I 9335 0.210 0.256 0.861 

6  13487 0.073 0.442 0.948 

7 I 13760 0.345 0.022 0.955 

8 I 7508 0.079 0.021 0.972 

9  8458 0.426 0.009 0.989 

10  3275 0.629 0.601 0.889 

Global  97187 0.596 0.322 0. 674 

Average   0.295 0.214 0.895 

Max   0.629 0.601 0.989 

Min   0.031 0.009 0.55 
I – humorous interaction mode, Blank – humorous video mode 

Classification baseline = 0.142 

 

TABLE I  

EMG DATA STREAM RELIABILITY.  
O = ACCEPTABLE, BLANK = SATURATED.  

Subject LS RS LA LL 

1 O O  O 

2 O    

3  O  O 

4  O   

5  O  O 

6 O O  O 

7 O O   

8 O O   

9 O O O O 

10 O O O O 



The 7-class classifier (Table II) performs poorly on subjects 

2, 6 and 8. Its average correct rate is, unsurprisingly, lower 

than the binary ones. However, an interesting finding is that its 

sensitivity and specificity are very unbalanced, sensitivity 

being definitely lower, at an average 20%, whilst its specificity 

is higher, at an average of 90%. Both binary classifiers (Table 

III and Table IV) perform rather poorly on data from subjects 2, 

3 and 9, and have comparable global and average correct rate, 

around 65%, and average sensitivity and specificity, 

respectively 50% and 63%, more or less balanced. 

 

TABLE III  

CLASSIFICATION RESULTS: LD BINARY 

Subject Mode 
Data 

samples 

Correct 

Rate 
Sensitivity Specificity 

1  9398 0.646 0.382 0.649 

2  11525 0.505 0.563 0.505 

3  10604 0.411 0.569 0.410 

4 I 9837 0.759 0.373 0.776 

5 I 9335 0.572 0.555 0.574 

6  13487 0.899 0.465 0.923 

7 I 13760 0.584 0.375 0.592 

8 I 7508 0.631 0.358 0.664 

9  8458 0.476 0.559 0.468 

10  3275 0.749 0.771 0.748 

Global  97187 0.645 0.786 0.711 

Average   0.623 0.497 0.631 

Max   0.899 0.771 0.923 

Min   0.411 0.358 0.410 

I – humorous interaction mode, Blank – humorous video mode 

Classification baseline = 0.5 

 

 
 

TABLE IV  

CLASSIFICATION RESULTS: SVM BINARY 

Subject Mode 
Data 

samples 

Correct 

Rate 
Sensitivity Specificity 

1  9398 0.745 0.338 0.748 

2  11525 0.205 0.932 0.198 

3  10604 0.339 0.606 0.337 

4 I 9837 0.820 0.219 0.847 

5 I 9335 0.530 0.639 0.519 

6  13487 0.922 0.460 0.948 

7 I 13760 0.851 0.182 0.876 

8 I 7508 0.802 0.138 0.882 

9  8458 0.205 0.894 0.134 

10  3275 0.748 0.880 0.747 

Global  97187 0.674 0.829 0.516 

Average   0.617 0.529 0.624 

Max   0.922 0.932 0.948 

Min   0.205 0.138 0.134 

I – humorous interaction mode, Blank – humorous video mode 

Classification baseline = 0.5 

 

To understand better such findings, the confusion matrices 

have been calculated in the three classification cases, and they 

are shown in Table V, Table VI, Table VII, and Table VIII. 

Table V and Table VI show that the two classifiers in the 

binary case laughter/not laughter seem to have comparable 

performances.  

Table VII and Table VIII show the confusion matrix in the 

case of full classification with 7 classes, and classification 

when the non-specified data “other action” have been removed. 

 

TABLE V  

 CONFUSION MATRIX: LD BINARY 

 Predicted class 

A
c
tu

a
l 

c
la

ss
 Subject 1 Laughter Not Laughter 

Laughter 0.30  0.70  

Not laughter 0.34  0.66  

    

 TABLE VI  

 CONFUSION MATRIX:  SVM BINARY 

 Predicted class 

A
c
tu

a
l 

c
la

ss
 Subject 1 Laughter Not Laughter 

Laughter 0.32  0.68  

Not laughter 0.26  0.74  

 

 
TABLE VII  

CONFUSION MATRIX: LD 7 CLASSES 

 Predicted class 

A
c
tu

a
l 

c
la

ss
 

class % Laughter 
Fake 

laughter 

Other 

action 
Reading Coughing Yawning 

Throat 

clearing 

Laughter 32.16  1.20  7.20  0.07  44.63  8.58  6.17  

Fake 

laughter 
26.23  0.25  5.30  0.25  41.49  25.47  1.01  

Other 

action 
33.05  0.19  5.48  0.05  42.87  16.07  2.28  

Reading 29.85  0.49  7.80  0.16  42.36  14.30  5.03  

Coughing 28.15  0.00  3.70  0.00  60.00  8.15  0.00  

Yawning 28.88  0.00  5.69  0.00  35.99  29.45  0.00  

Throat 

clearing 
32.15  0.00  3.10  0.00  48.12  16.63  0.00  

Mk 

 

m 

TABLE VIII  

CONFUSION MATRIX: LD 6 CLASSES 

 Predicted class 

A
c
tu

a
l 

c
la

ss
 

class % Laughter 
Fake 

laughter 
Reading Coughing Yawning 

Throat 

clearing 

Laughter 39.57  1.07  1.60  42.25  7.49  8.02  

Fake laughter 32.35  0.00  2.94  41.18  23.53  0.00  

Reading 37.45  0.84  2.38  40.25  12.62  6.45  

Coughing 35.29  0.00  0.00  58.82  5.88  0.00  

Yawning 36.67  0.00  0.00  36.67  26.67  0.00  

Throat clearing 36.84  0.00  0.00  47.37  15.79  0.00  

        



IV.  DISCUSSION 

Discrimination between different vocalizations is possible 
for the neck EMG data based on the first three principal 
components, using a linear classifier, with a correct 
discrimination rate of 60%, for a classification among 7 
different classes, and of 65% for a binary classification 
laughter/not laughter, on the global database. Results are very 
similar using a SVM classifier for binary classification, with a 
correct classification rate of 67% on the global database. 
However, results for individual subjects are more consistent 
using the LD binary classifier, with a lower variance of correct 
rate, sensitivity and specificity among subjects. 

Performances of the LD classifier change when used for 
binary classification, and for global action classification. In 
binary classification, sensitivity and specificity of both 
classifiers are balanced, at around 50%. In global action 
classification, independently from the correct rate, the 
specificity of the classifier is generally high, while its 
sensitivity is low. The confusion matrix for the linear 7-class 
classifier is in line with global classification performance data: 
specificity is favored over sensitivity, and FN rate is much 
higher than TP rate for each single class.  

Classification results and sensitivity definitely improve if 
we remove the “other action” data, which outnumber the other 
class data, skewing the data set, and also might include actions 
very different from each other thus difficult to categorize finely. 
Laughing is misclassified easily as coughing (42.25%), and 
sometimes as yawning (7.49%) and throat clearing (8.02%). 
Reading/speaking is not easily recognized (2.38%), and it is 
often misclassified either as laughter (37.45%) or as coughing 
(40.25%). Throat clearing and Fake laughter recognition rate is 
0%, and they are both misclassified with laughter, coughing, or 
yawing. 

Interestingly, classification performances on subjects in 
different stimulus mode, interaction or video do not appear to 
be very different. The main difference in these modes is that 
subjects in interaction mode are interacting with someone, so 
“other action” class is mainly composed of talking, and random 
head and neck movement to maintain eye contact with the 
companion, while subjects watching videos are silent and 
mainly stationary. However, binary classification on subjects in 
interaction mode generally presents a lower sensitivity. 

V. CONCLUSIONS AND FUTURE WORKS 

 In this paper we described a sEMG-based wearable sensor 
system to detect laughter on the neck and we presented the 
results of the experiment to validate the effectiveness of such 
system and of the proposed methodology. The results obtained 
by this experiment show that laughter may be detectable and 
measurable with non-invasive wearable sEMG sensors on the 
neck but better features extraction and tuning of the model is 
needed. In fact, the obtained results show that this system can 
recognize laughter from other different actions with a global 
correct discrimination rate of at least 64%. These results, 
especially the ones obtained with the binary classifiers, 
compared with previous works in the field, using acoustic 
features [14]–[22], or other sEMG-based systems, [36], [44]–

[49], are not particularly impressive. However, even if this 

EMG-based system is more invasive compared to video or 
audio systems, it is less invasive compared to previously 
developed sEMG systems, and it could be used either as 
standalone wearable system or as an auxiliary system to detect 
and classify laughter together with audio or video systems. In 
the future, we are planning to find the causes of 
misclassification as well as refine the classification algorithm 
to improve its sensitivity, possibly using machine learning 
techniques to dynamically adjust the classification depending 
on individual laughter features.  
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