11,587 research outputs found

    Indoor mould growth prediction using coupled computational fluid dynamics and mould growth model

    Get PDF
    This study investigates, using in-situ and numerical simulation experiments, airflow and hygrothermal distribution in a mechanically ventilated academic research facility with known cases of microbial proliferations. Microclimate parameters were obtained from in-situ experiments and used as boundary conditions and validation of the numerical experiments with a commercial computational fluid dynamics (CFD) analysis tool using the standard k–ε model. Good agreements were obtained with less than 10% deviations between the measured and simulated results. Subsequent upon successful validation, the model was used to investigate hygrothermal and airflow profile within the shelves holding stored components in the facility. The predicted in-shelf hygrothermal profile was superimposed on mould growth limiting curve earlier documented in the literature. Results revealed the growth of xerophilic species in most parts of the shelves. The mould growth prediction was found in correlation with the microbial investigation in the case-studied room reported by the authors elsewhere. Satisfactory prediction of mould growth in the room successfully proved that the CFD simulation can be used to investigate the conditions that lead to microbial growth in the indoor environment

    Experimental investigation on thermal comfort model between local thermal sensation and overall thermal sensation

    Get PDF
    To study the human local and overall thermal sensations, a series of experiments under various conditions were carried out in a climate control chamber. The adopted analysis method considered the effect of the weight coefficient of local average skin temperature and density of the cold receptors’ distribution in different local body areas. The results demonstrated that the thermal sensation of head, chest, back and hands is warmer than overall thermal sensation. The mean thermal sensation votes of those local areas were more densely distributed. In addition, the thermal sensation of arms, tight and calf was colder than the overall thermal sensation, which pronounced that thermal sensation votes were more dispersed. The thermal sensation of chest and back had a strong linear correlation with overall thermal sensation. Considering the actual scope of air-conditioning regulation, the human body was classified into three local parts: a) head, b) upper part of body and c) lower part of body. The prediction model of both the three-part thermal sensation and overall thermal sensation was developed. Weight coefficients were 0.21, 0.60 and 0.19 respectively. The model provides scientist basis for guiding the sage installation place of the personal ventilation system to achieve efficient energy use

    Hidden itinerant-spin phase in heavily-overdoped La2-xSrxCuO4 revealed by dilute Fe doping: A combined neutron scattering and angle-resolved photoemission study

    Full text link
    We demonstrated experimentally a direct way to probe a hidden propensity to the formation of spin density wave (SDW) in a non-magnetic metal with strong Fermi surface nesting. Substituting Fe for a tiny amount of Cu (1%) induced an incommensurate magnetic order below 20 K in heavily-overdoped La2-xSrxCuO4 (LSCO). Elastic neutron scattering suggested that this order cannot be ascribed to the localized spins on Cu or doped Fe. Angle-resolved photoemission spectroscopy (ARPES), combined with numerical calculations, revealed a strong Fermi surface nesting inherent in the pristine LSCO that likely drives this order. The heavily-overdoped Fe-doped LSCO thus represents the first plausible example of the long-sought "itinerant-spin extreme" of cuprates, where the spins of itinerant doped holes define the magnetic ordering ground state. This finding complements the current picture of cuprate spin physics that highlights the predominant role of localized spins at lower dopings. The demonstrated set of methods could potentially apply to studying hidden density-wave instabilities of other "nested" materials on the verge of density wave ordering.Comment: Abstract and discussion revised; to appear in Phys. Rev. Let

    Bandwidth and Electron Correlation-Tuned Superconductivity in Rb0.8_{0.8}Fe2_{2}(Se1z_{1-z}Sz_z)2_2

    Full text link
    We present a systematic angle-resolved photoemission spectroscopy study of the substitution-dependence of the electronic structure of Rb0.8_{0.8}Fe2_{2}(Se1z_{1-z}Sz_z)2_2 (z = 0, 0.5, 1), where superconductivity is continuously suppressed into a metallic phase. Going from the non-superconducting Rb0.8_{0.8}Fe2_{2}(Se1z_{1-z}Sz_z)2_2 to superconducting Rb0.8_{0.8}Fe2_{2}Se2_2, we observe little change of the Fermi surface topology, but a reduction of the overall bandwidth by a factor of 2 as well as an increase of the orbital-dependent renormalization in the dxyd_{xy} orbital. Hence for these heavily electron-doped iron chalcogenides, we have identified electron correlation as explicitly manifested in the quasiparticle bandwidth to be the important tuning parameter for superconductivity, and that moderate correlation is essential to achieving high TCT_C

    Decays of J/ψJ/\psi and ψ\psi^\prime into vector and pseudoscalar meson and the pseudoscalar glueball-qqˉq\bar{q} mixing

    Get PDF
    We introduce a parametrization scheme for J/ψ(ψ)VPJ/\psi(\psi^\prime)\to VP where the effects of SU(3) flavor symmetry breaking and doubly OZI-rule violation (DOZI) can be parametrized by certain parameters with explicit physical interpretations. This scheme can be used to clarify the glueball-qqˉq\bar{q} mixing within the pseudoscalar mesons. We also include the contributions from the electromagnetic (EM) decays of J/ψJ/\psi and ψ\psi^\prime via J/ψ(ψ)γVPJ/\psi(\psi^\prime)\to \gamma^*\to VP. Via study of the isospin violated channels, such as J/ψ(ψ)ρηJ/\psi(\psi^\prime)\to \rho\eta, ρη\rho\eta^\prime, ωπ0\omega\pi^0 and ϕπ0\phi\pi^0, reasonable constraints on the EM decay contributions are obtained. With the up-to-date experimental data for J/ψ(ψ)VPJ/\psi(\psi^\prime)\to VP, J/ψ(ψ)γPJ/\psi(\psi^\prime)\to \gamma P and PγγP\to \gamma\gamma, etc, we arrive at a consistent description of the mentioned processes with a minimal set of parameters. As a consequence, we find that there exists an overall suppression of the ψ3g\psi^\prime\to 3g form factors, which sheds some light on the long-standing "ρπ\rho\pi puzzle". By determining the glueball components inside the pseudoscalar η\eta and η\eta^\prime in three different glueball-qqˉq\bar{q} mixing schemes, we deduce that the lowest pseudoscalar glueball, if exists, has rather small qqˉq\bar{q} component, and it makes the η(1405)\eta(1405) a preferable candidate for 0+0^{-+} glueball.Comment: Revised version to appear on J. Phys. G; An error in the code was corrected. There's slight change to the numerical results, while the conclusion is intac

    Highly Efficient Excitation of Surface Plasmons Using a Si Gable Tip

    Get PDF
    A compact and highly efficient technique to excite SPP mode at an Au/SiO2 interface by using an engineered high index (silicon) gabled tip at the 1550 nm wavelength has been proposed. The optimized geometry of the Si tip enables a highly efficient excitation of the single interface SPP mode through near field interaction in an ultra-compact setup. An experimental demonstration of the proposed scheme is also presented in the paper which converts 25.5% of the total input power to an SPP mode. With an improved fabrication, this efficiency can reach as high as 52%. The device is compact, facilitates on-chip excitation of the SPP, its fabrication is compatible with the standard Si fabrication processes, and, as such it is expected to be very useful in the design of future integrated photonic circuits as well as integrated sensors. Also, this scheme can find applications in studying nonlinear characteristics of materials

    Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface

    Full text link
    Many-body interactions in transition-metal oxides give rise to a wide range of functional properties, such as high-temperature superconductivity, colossal magnetoresistance, or multiferroicity. The seminal recent discovery of a two-dimensional electron gas (2DEG) at the interface of the insulating oxides LaAlO3 and SrTiO3 represents an important milestone towards exploiting such properties in all-oxide devices. This conducting interface shows a number of appealing properties, including a high electron mobility, superconductivity, and large magnetoresistance and can be patterned on the few-nanometer length scale. However, the microscopic origin of the interface 2DEG is poorly understood. Here, we show that a similar 2DEG, with an electron density as large as 8x10^13 cm^-2, can be formed at the bare SrTiO3 surface. Furthermore, we find that the 2DEG density can be controlled through exposure of the surface to intense ultraviolet (UV) light. Subsequent angle-resolved photoemission spectroscopy (ARPES) measurements reveal an unusual coexistence of a light quasiparticle mass and signatures of strong many-body interactions.Comment: 14 pages, 4 figures, supplementary information (see other files
    corecore