19 research outputs found

    Small-Energy Analysis for the Selfadjoint Matrix Schroedinger Operator on the Half Line

    Full text link
    The matrix Schroedinger equation with a selfadjoint matrix potential is considered on the half line with the most general selfadjoint boundary condition at the origin. When the matrix potential is integrable and has a first moment, it is shown that the corresponding scattering matrix is continuous at zero energy. An explicit formula is provided for the scattering matrix at zero energy. The small-energy asymptotics are established also for the corresponding Jost matrix, its inverse, and various other quantities relevant to the corresponding direct and inverse scattering problems.Comment: This published version has been edited to improve the presentation of the result

    Mathematical Aspects of Vacuum Energy on Quantum Graphs

    Get PDF
    We use quantum graphs as a model to study various mathematical aspects of the vacuum energy, such as convergence of periodic path expansions, consistency among different methods (trace formulae versus method of images) and the possible connection with the underlying classical dynamics. We derive an expansion for the vacuum energy in terms of periodic paths on the graph and prove its convergence and smooth dependence on the bond lengths of the graph. For an important special case of graphs with equal bond lengths, we derive a simpler explicit formula. The main results are derived using the trace formula. We also discuss an alternative approach using the method of images and prove that the results are consistent. This may have important consequences for other systems, since the method of images, unlike the trace formula, includes a sum over special ``bounce paths''. We succeed in showing that in our model bounce paths do not contribute to the vacuum energy. Finally, we discuss the proposed possible link between the magnitude of the vacuum energy and the type (chaotic vs. integrable) of the underlying classical dynamics. Within a random matrix model we calculate the variance of the vacuum energy over several ensembles and find evidence that the level repulsion leads to suppression of the vacuum energy.Comment: Fixed several typos, explain the use of random matrices in Section

    Essential spectra of difference operators on \sZ^n-periodic graphs

    Full text link
    Let (\cX, \rho) be a discrete metric space. We suppose that the group \sZ^n acts freely on XX and that the number of orbits of XX with respect to this action is finite. Then we call XX a \sZ^n-periodic discrete metric space. We examine the Fredholm property and essential spectra of band-dominated operators on lp(X)l^p(X) where XX is a \sZ^n-periodic discrete metric space. Our approach is based on the theory of band-dominated operators on \sZ^n and their limit operators. In case XX is the set of vertices of a combinatorial graph, the graph structure defines a Schr\"{o}dinger operator on lp(X)l^p(X) in a natural way. We illustrate our approach by determining the essential spectra of Schr\"{o}dinger operators with slowly oscillating potential both on zig-zag and on hexagonal graphs, the latter being related to nano-structures

    Quantum Graphs: A simple model for Chaotic Scattering

    Full text link
    We connect quantum graphs with infinite leads, and turn them to scattering systems. We show that they display all the features which characterize quantum scattering systems with an underlying classical chaotic dynamics: typical poles, delay time and conductance distributions, Ericson fluctuations, and when considered statistically, the ensemble of scattering matrices reproduce quite well the predictions of appropriately defined Random Matrix ensembles. The underlying classical dynamics can be defined, and it provides important parameters which are needed for the quantum theory. In particular, we derive exact expressions for the scattering matrix, and an exact trace formula for the density of resonances, in terms of classical orbits, analogous to the semiclassical theory of chaotic scattering. We use this in order to investigate the origin of the connection between Random Matrix Theory and the underlying classical chaotic dynamics. Being an exact theory, and due to its relative simplicity, it offers new insights into this problem which is at the fore-front of the research in chaotic scattering and related fields.Comment: 28 pages, 13 figures, submitted to J. Phys. A Special Issue -- Random Matrix Theor

    Entropic bounds on semiclassical measures for quantized one-dimensional maps

    Full text link
    Quantum ergodicity asserts that almost all infinite sequences of eigenstates of a quantized ergodic system are equidistributed in the phase space. On the other hand, there are might exist exceptional sequences which converge to different (non-Liouville) classical invariant measures. By the remarkable result of N. Anantharaman and S. Nonnenmacher math-ph/0610019, arXiv:0704.1564 (with H. Koch), for Anosov geodesic flows the metric entropy of any semiclassical measure must be bounded from below. The result seems to be optimal for uniformly expanding systems, but not in general case, where it might become even trivial if the curvature of the Riemannian manifold is strongly non-uniform. It has been conjectured by the same authors, that in fact, a stronger bound (valid in general case) should hold. In the present work we consider such entropic bounds using the model of quantized one-dimensional maps. For a certain class of non-uniformly expanding maps we prove Anantharaman-Nonnenmacher conjecture. Furthermore, for these maps we are able to construct some explicit sequences of eigenstates which saturate the bound. This demonstrates that the conjectured bound is actually optimal in that case.Comment: 38 pages, 4 figure

    Anatomy of quantum chaotic eigenstates

    Get PDF
    The eigenfunctions of quantized chaotic systems cannot be described by explicit formulas, even approximate ones. This survey summarizes (selected) analytical approaches used to describe these eigenstates, in the semiclassical limit. The levels of description are macroscopic (one wants to understand the quantum averages of smooth observables), and microscopic (one wants informations on maxima of eigenfunctions, "scars" of periodic orbits, structure of the nodal sets and domains, local correlations), and often focusses on statistical results. Various models of "random wavefunctions" have been introduced to understand these statistical properties, with usually good agreement with the numerical data. We also discuss some specific systems (like arithmetic ones) which depart from these random models.Comment: Corrected typos, added a few references and updated some result
    corecore