101 research outputs found

    Direct and Simultaneous Observation of Ultrafast Electron and Hole Dynamics in Germanium

    Get PDF
    Understanding excited carrier dynamics in semiconductors is crucial for the development of photovoltaics and efficient photonic devices. However, overlapping spectral features in optical/NIR pump-probe spectroscopy often render assignments of separate electron and hole carrier dynamics ambiguous. Here, ultrafast electron and hole dynamics in germanium nanocrystalline thin films are directly and simultaneously observed by attosecond transient absorption spectroscopy (ATAS) in the extreme ultraviolet at the germanium M_{4,5}-edge (~30 eV). We decompose the ATAS spectra into contributions of electronic state blocking and photo-induced band shifts at a carrier density of 8*10^{20}cm^{-3}. Separate electron and hole relaxation times are observed as a function of hot carrier energies. A first order electron and hole decay of ~1 ps suggests a Shockley-Read-Hall recombination mechanism. The simultaneous observation of electrons and holes with ATAS paves the way for investigating few to sub-femtosecond dynamics of both holes and electrons in complex semiconductor materials and across junctions.Comment: Includes Supplementary Informatio

    Attosecond Time-Domain Measurement of Core-Level-Exciton Decay in Magnesium Oxide.

    Get PDF
    Excitation of ionic solids with extreme ultraviolet pulses creates localized core-level excitons, which in some cases couple strongly to the lattice. Here, core-level-exciton states of magnesium oxide are studied in the time domain at the Mg L_{2,3} edge with attosecond transient reflectivity spectroscopy. Attosecond pulses trigger the excitation of these short-lived quasiparticles, whose decay is perturbed by time-delayed near-infrared pulses. Combined with a few-state theoretical model, this reveals that the infrared pulse shifts the energy of bright (dipole-allowed) core-level-exciton states as well as induces features arising from dark core-level excitons. We report coherence lifetimes for the two lowest core-level excitons of 2.3±0.2 and 1.6±0.5  fs and show that these are primarily a consequence of strong exciton-phonon coupling, disclosing the drastic influence of structural effects in this ultrafast relaxation process

    Real-time and Sub-wavelength Ultrafast Coherent Diffraction Imaging in the Extreme Ultraviolet

    Get PDF
    Coherent Diffraction Imaging is a technique to study matter with nanometer-scale spatial resolution based on coherent illumination of the sample with hard X-ray, soft X-ray or extreme ultraviolet light delivered from synchrotrons or more recently X-ray Free-Electron Lasers. This robust technique simultaneously allows quantitative amplitude and phase contrast imaging. Laser-driven high harmonic generation XUV-sources allow table-top realizations. However, the low conversion efficiency of lab-based sources imposes either a large scale laser system or long exposure times, preventing many applications. Here we present a lensless imaging experiment combining a high numerical aperture (NA=0.8) setup with a high average power fibre laser driven high harmonic source. The high flux and narrow-band harmonic line at 33.2 nm enables either sub-wavelength spatial resolution close to the Abbe limit (Delta r=0.8 lambda) for long exposure time, or sub-70 nm imaging in less than one second. The unprecedented high spatial resolution, compactness of the setup together with the real-time capability paves the way for a plethora of applications in fundamental and life sciences

    Hot Phonon and Carrier Relaxation in Si(100) Determined by Transient Extreme Ultraviolet Spectroscopy

    Get PDF
    The thermalization of hot carriers and phonons gives direct insight into the scattering processes that mediate electrical and thermal transport. Obtaining the scattering rates for both hot carriers and phonons currently requires multiple measurements with incommensurate timescales. Here, transient extreme-ultraviolet (XUV) spectroscopy on the silicon 2p core level at 100 eV is used to measure hot carrier and phonon thermalization in Si(100) from tens of femtoseconds to 200 ps following photoexcitation of the indirect transition to the {\Delta} valley at 800 nm. The ground state XUV spectrum is first theoretically predicted using a combination of a single plasmon pole model and the Bethe-Salpeter equation (BSE) with density functional theory (DFT). The excited state spectrum is predicted by incorporating the electronic effects of photo-induced state-filling, broadening, and band-gap renormalization into the ground state XUV spectrum. A time-dependent lattice deformation and expansion is also required to describe the excited state spectrum. The kinetics of these structural components match the kinetics of phonons excited from the electron-phonon and phonon-phonon scattering processes following photoexcitation. Separating the contributions of electronic and structural effects on the transient XUV spectra allows the carrier population, the population of phonons involved in inter- and intra-valley electron-phonon scattering, and the population of phonons involved in phonon-phonon scattering to be quantified as a function of delay time

    Polarization Dependent Excitation and High Harmonic Generation from Intense Mid-IR Laser Pulses in ZnO

    Get PDF
    The generation of high order harmonics from femtosecond mid-IR laser pulses in ZnO has shown great potential to reveal new insight into the ultrafast electron dynamics on a few femtosecond timescale. In this work we report on the experimental investigation of photoluminescence and high-order harmonic generation (HHG) in a ZnO single crystal and polycrystalline thin film irradiated with intense femtosecond mid-IR laser pulses. The ellipticity dependence of the HHG process is experimentally studied up to the 17th harmonic order for various driving laser wavelengths in the spectral range 3–4 µm. Interband Zener tunneling is found to exhibit a significant excitation efficiency drop for circularly polarized strong-field pump pulses. For higher harmonics with energies larger than the bandgap, the measured ellipticity dependence can be quantitatively described by numerical simulations based on the density matrix equations. The ellipticity dependence of the below and above ZnO band gap harmonics as a function of the laser wavelength provides an efficient method for distinguishing the dominant HHG mechanism for different harmonic orders

    Ultrafast carrier thermalization and trapping in silicon-germanium alloy probed by extreme ultraviolet transient absorption spectroscopy

    Get PDF
    Semiconductor alloys containing silicon and germanium are of growing importance for compact and highly efficient photonic devices due to their favorable properties for direct integration into silicon platforms and wide tunability of optical parameters. Here, we report the simultaneous direct and energy-resolved probing of ultrafast electron and hole dynamics in a silicon-germanium alloy with the stoichiometry Si_(0.2)5Ge_(0.75) by extreme ultraviolet transient absorption spectroscopy. Probing the photoinduced dynamics of charge carriers at the germanium M_(4,5)-edge (∼30 eV) allows the germanium atoms to be used as reporter atoms for carrier dynamics in the alloy. The photoexcitation of electrons across the direct and indirect band gap into conduction band (CB) valleys and their subsequent hot carrier relaxation are observed and compared to pure germanium, where the Ge direct (ΔE_(gap,Ge,direct) = 0.8eV) and Si_(0.25)Ge_(0.75) indirect gaps (ΔE_(gap,Si_(0.25)Ge_(0.75),indirect) = 0.95 eV) are comparable in energy. In the alloy, comparable carrier lifetimes are observed for the X, L, and Γ valleys in the conduction band. A midgap feature associated with electrons accumulating in trap states near the CB edge following intraband thermalization is observed in the Si_(0.25)Ge_(0.75) alloy. The successful implementation of the reporter atom concept for capturing the dynamics of the electronic bands by site-specific probing in solids opens a route to study carrier dynamics in more complex materials with femtosecond and sub-femtosecond temporal resolution
    • …
    corecore