499 research outputs found

    Evaluation of E Layer Dominated Ionosphere Events Using COSMIC/FORMOSAT-3 and CHAMP Ionospheric Radio Occultation Data

    Get PDF
    At certain geographic locations, especially in the polar regions, the ionization of the ionospheric E layer can dominate over that of the F2 layer. The associated electron density profiles show their ionization maximum at E layer heights between 80 and 150 km above the Earth’s surface. This phenomenon is called the “E layer dominated ionosphere” (ELDI). In this paper we systematically investigate the characteristics of ELDI occurrences at high latitudes, focusing on their spatial and temporal variations. In our study, we use ionospheric GPS radio occultation data obtained from the COSMIC/FORMOSAT-3 (Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa Satellite Mission 3) and CHAMP (Challenging Minisatellite Payload) satellite missions. The entire dataset comprises the long period from 2001 to 2018, covering the previous and present solar cycles. This allows us to study the variation of the ELDI in different ways. In addition to the geospatial distribution, we also examine the temporal variation of ELDI events, focusing on the diurnal, the seasonal, and the solar cycle dependent variation. Furthermore, we investigate the spatiotemporal dependency of the ELDI on geomagnetic storms

    Tilted guides with friction in web conveyance systems

    Get PDF
    One challenge in designing web conveyance systems is controlling the displacement and vibration of the webs by guides without introducing instabilities or higher frequency disturbances from flange impacts. A solution to this problem is to use an actively or passively tilted guide or roller to steer the web. In this paper, a model of tilted guides with friction is developed, and it is shown that tilted guides produce a change in the web’s displacement, slope, bending moment, and shear force. When the web is conceptually unwrapped from its path, the normal force between the web and a tilted guide has a component that acts in the direction of the web’s lateral displacement, resulting in an equivalent force and bending moment acting on the web. The model is validated by measurements, and is compared to a previously existing model of guide tilt. In the configurations studied, the displacement of the web near the guide is linearly dependent on the tilt angle and tension and it increases exponentially with the web’s span length. When the guide’s tilt is oriented towards the center of the web’s wrap around the guide, the equivalent bending moment is zero in the absence of friction, and there is good agreement between the model developed in this paper and the previously existing model. However, when the center of the web’s wrap is oriented 90° away from the guide’s tilt orientation, the equivalent force is zero in the absence of friction, and measurements demonstrate the necessity of the equivalent bending moment

    Entanglement properties of optical coherent states under amplitude damping

    Full text link
    Through concurrence, we characterize the entanglement properties of optical coherent-state qubits subject to an amplitude damping channel. We investigate the distillation capabilities of known error correcting codes and obtain upper bounds on the entanglement depending on the non-orthogonality of the coherent states and the channel damping parameter. This work provides a first, full quantitative analysis of these photon-loss codes which are naturally reminiscent of the standard qubit codes against Pauli errors.Comment: 7 pages, 6 figures. Revised version with small corrections; main results remain unaltere

    GNSS remote sensing of the Australian tropopause

    Get PDF
    Radio occultation (RO) techniques that use signals transmitted by Global Navigation Satellite Systems (GNSS) have emerged over the past decade as an important tool for measuring global changes in tropopause temperature and height, a valuable capacity given the tropopause’s sensitivity to temperature variations. This study uses 45,091 RO data from the CHAMP (CHAllenging Minisatellite Payload, 80 months), GRACE (Gravity Recovery And Climate Experiment, 23 months) and COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate, 20 months) satellites to analyse the variability of the tropopause’s height and temperature over Australia. GNSS RO temperature profiles from CHAMP, GRACE, and COSMIC are first validated using radiosonde observations provided by the Bureau of Meteorology (Australia). These are compared to RO soundings from between 2001 and 2007 that occurred within 3 h and 100 km of a radiosonde.The results indicate that RO soundings provide data of a comparable quality to radiosonde observations in the tropopause region, with temperature deviations of less than 0.5 ± 1.5 K. An analysis of tropopause height and temperature anomalies indicates a height increase over Australia as a whole of ca. 4.8 ± 1.3 m between September 2001 and April 2008, with a corresponding temperature decrease of −0.019 ± 0.007 K. A similar pattern of increasing height/decreasing temperature was generally observed when determining the spatial distribution of the tropopause height and temperature rate of change over Australia. Although only a short period has been considered in this study, a function of the operating time of these satellites, the results nonetheless show an increase in the height of the tropopause over Australia during this period and thus may indicate regional warming. Several mechanisms could be responsible for these changes, such as an increase in the concentration of greenhouse gases in the atmosphere, and lower stratospheric cooling due to ozone loss, both of which have been observed during the last decades

    GNSS-based water vapor estimation and validation during the MOSAiC expedition

    Get PDF
    Within the transpolar drifting expedition MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate), the Global Navigation Satellite System (GNSS) was used among other techniques to monitor variations in atmospheric water vapor. Based on 15 months of continuously tracked GNSS data including GPS, GLONASS and Galileo, epoch-wise coordinates and hourly zenith total delays (ZTDs) were determined using a kinematic precise point positioning (PPP) approach. The derived ZTD values agree to 1.1 ± 0.2 mm (root mean square (rms) of the differences 10.2 mm) with the numerical weather data of ECMWF's latest reanalysis, ERA5, computed for the derived ship's locations. This level of agreement is also confirmed by comparing the on-board estimates with ZTDs derived for terrestrial GNSS stations in Bremerhaven and Ny-Ålesund and for the radio telescopes observing very long baseline interferometry in Ny-Ålesund. Preliminary estimates of integrated water vapor derived from frequently launched radiosondes are used to assess the GNSS-derived integrated water vapor estimates. The overall difference of 0.08 ± 0.04 kg m−2 (rms of the differences 1.47 kg m−2) demonstrates a good agreement between GNSS and radiosonde data. Finally, the water vapor variations associated with two warm-air intrusion events in April 2020 are assessed

    Validation of GPS atmospheric water vapor with WVR data in satellite tracking mode

    Get PDF
    Slant-integrated water vapor (SIWV) data derived from GPS STDs (slant total delays), which provide the spatial information on tropospheric water vapor, have a high potential for assimilation to weather models or for nowcasting or reconstruction of the 3-D humidity field with tomographic techniques. Therefore, the accuracy of GPS STD is important, and independent observations are needed to estimate the quality of GPS STD. In 2012 the GFZ (German Research Centre for Geosciences) started to operate a microwave radiometer in the vicinity of the Potsdam GPS station. The water vapor content along the line of sight between a ground station and a GPS satellite can be derived from GPS data and directly measured by a water vapor radiometer (WVR) at the same time. In this study we present the validation results of SIWV observed by a ground-based GPS receiver and a WVR. The validation covers 184 days of data with dry and wet humidity conditions. SIWV data from GPS and WVR generally show good agreement with a mean bias of −0.4 kg m−2 and an rms (root mean square) of 3.15 kg m−2. The differences in SIWV show an elevation dependent on an rms of 7.13 kg m−2 below 15° but of 1.76 kg m−2 above 15°. Nevertheless, this elevation dependence is not observed regarding relative deviations. The relation between the differences and possible influencing factors (elevation angles, pressure, temperature and relative humidity) are analyzed in this study. Besides the elevation, dependencies between the atmospheric humidity conditions, temperature and the differences in SIWV are found
    corecore