855 research outputs found

    On the dynamics of vortex modes within magnetic islands

    Full text link
    Recent work investigating the interaction of magnetic islands with micro-turbulence has uncovered the striking observation of large scale vortex modes forming within the island structure [W.A. Hornsby {\it et al.}, Phys. Plasmas {\bf 17} 092301 (2010)]. These electrostatic vortices are found to be the size of the island and are oscillatory. It is this oscillatory behaviour and the presence of turbulence that leads us to believe that the dynamics are related to the Geodesic Acoustic Mode (GAM), and it is this link that is investigated in this paper. Here we derive an equation for the GAM in the MHD limit, in the presence of a magnetic island modified three-dimensional axisymmetric geometry. The eigenvalues and eigenfunctions are calculated numerically and then utilised to analyse the dynamics of oscillatory large-scale electrostatic potential structures seen in both linear and non-linear gyro-kinetic simulations

    Heterogeneity of Human Gingival Fibroblasts in Tobaccostimulated Collagen Degradation

    Get PDF
    poster abstractMatrix metalloproteinases (MMPs) are a large family of zinc-dependent endopeptidases and their activity is modulated by tissue inhibitors of metalloproteinases (TIMPs). Smoking is a risk factor for periodontal disease. Cigarette smoke condensate (CSC) is the particulate matter of cigarette smoke. Human gingival fibroblasts (HGFs) are one of major cellular components in periodontal tissue. CSC can increase collagen degradation of HGFs by enhancing and altering the localization of MMPs. Previous clinical studies also showed that some smoking people even with very high dental plaque index still had good periodontal status and did not develop periodontal disease. Objectives: The aim of this study was to investigate the heterogeneity of HGFs to CSC-stimulated collagen degradation and to start examining its mechanisms. Methods: Eleven HGF cell lines were established from healthy gingival tissue from patients undergoing crown-lengthening surgery. HGFs were seeded as single colony (75,000 cells/well) in 6-well Type I collagen coated plates and exposed to 100 µg/ml CSC (Murty Pharmaceuticals, Lexington, KY) diluted in serum-free media with/without a MMPs inhibitor (GM6001, 100 nM, Chemicon, Temecla, CA) for 3 days. HGFs were seeded with serum free media alone as controls. The mRNA levels of multiple MMPs/TIMPs were measured by reverse transcriptionpolymerase chain reaction. Results: CSC increased collagen degradation in 7 HGF cell lines (CSC-susceptible HGFs), but not in 4 HGF cell lines (CSC-unsusceptible HGFs). GM6001 inhibited CSC-stimulated collagen degradation in all of CSC-susceptible HGFs. The mRNA levels of MMP-1, MMP-2, MMP-3, MMP-14, TIMP-1, and TIMP-2 increased 2.5, 1.3, 3.9, 2.0, 1.6, and 1.3 fold, respectively, in the CSC-susceptible HGFs. However, expression of MMPs/TIMPs basically didn’t change in the CSC-unsusceptible HGFs, except for MMP-3 which increased 1.4 fold. Conclusions: Heterogeneity of HGFs existed in regard to the CSC-stimulated collagen degradation and the altered expression of the MMPs/TIMPs may be responsible for this heterogeneity. This project was supported by the IUPUI Tobacco Cessation and Biobehavioral Center

    Crystal Symmetry Lowering in Chiral Multiferroic Ba3_3TaFe3_3Si2_2O14_{14} observed by X-Ray Magnetic Scattering

    Full text link
    Chiral multiferroic langasites have attracted attention due to their doubly-chiral magnetic ground state within an enantiomorphic crystal. We report on a detailed resonant soft X-ray diffraction study of the multiferroic Ba3_3TaFe3_3Si2_2O14_{14} at the Fe L2,3L_{2,3} and oxygen KK edges. Below TNT_N (≈27K\approx27K) we observe the satellite reflections (0,0,τ)(0,0,\tau), (0,0,2τ)(0,0,2\tau), (0,0,3τ)(0,0,3\tau) and (0,0,1−3τ)(0,0,1-3\tau) where τ≈0.140±0.001\tau \approx 0.140 \pm 0.001. The dependence of the scattering intensity on X-ray polarization and azimuthal angle indicate that the odd harmonics are dominated by the out-of-plane (c^\mathbf{\hat{c}}-axis) magnetic dipole while the (0,0,2τ)(0,0,2\tau) originates from the electron density distortions accompanying magnetic order. We observe dissimilar energy dependences of the diffraction intensity of the purely magnetic odd-harmonic satellites at the Fe L3L_3 edge. Utilizing first-principles calculations, we show that this is a consequence of the loss of threefold crystal symmetry in the multiferroic phase

    Multiple magnetic ordering phenomena in multiferroic o-HoMnO3

    Get PDF
    Orthorhombic HoMnO3 is a multiferroic in which Mn antiferromagnetic order induces ferroelectricity. A second transition occurs within the multiferroic phase, in which a strong enhancement of the ferroelectric polarization occurs concomitantly to antiferromagnetic ordering of Ho 4f magnetic moments. Using the element selectivity of resonant X-ray diffraction, we study the magnetic order of the Mn 3d and Ho 4f moments. We explicitly show that the Mn magnetic order is affected by the Ho 4f magnetic ordering transition. Based on the azimuthal dependence of the (0 q 0) and (0 1-q 0) magnetic reflections, we suggest that the Ho 4f order is similar to that previously observed for Tb 4f in TbMnO3, which resembles an ac-cycloid. This is unlike the Mn order, which has already been shown to be different for the two materials. Using non-resonant diffraction, we show that the magnetically-induced ferroelectric lattice distortion is unaffected by the Ho ordering, suggesting a mechanism through which the Ho order affects polarization without affecting the lattice in the same manner as the Mn order

    Ultrafast Laser-Induced Melting of Long-Range Magnetic Order in Multiferroic TbMnO3

    Full text link
    We performed ultrafast time-resolved near-infrared pump, resonant soft X-ray diffraction probe measurements to investigate the coupling between the photoexcited electronic system and the spin cycloid magnetic order in multiferroic TbMnO3 at low temperatures. We observe melting of the long range antiferromagnetic order at low excitation fluences with a decay time constant of 22.3 +- 1.1 ps, which is much slower than the ~1 ps melting times previously observed in other systems. To explain the data we propose a simple model of the melting process where the pump laser pulse directly excites the electronic system, which then leads to an increase in the effective temperature of the spin system via a slower relaxation mechanism. Despite this apparent increase in the effective spin temperature, we do not observe changes in the wavevector q of the antiferromagnetic spin order that would typically correlate with an increase in temperature under equilibrium conditions. We suggest that this behavior results from the extremely low magnon group velocity that hinders a change in the spin-spiral wavevector on these time scales.Comment: 9 pages, 4 figure
    • …
    corecore