1,565 research outputs found

    Plant Atrium System for Food Production in NASA's Deep Space Habitat Tests

    Get PDF
    In preparation for future human exploration missions to space, human habitat designs and concepts need to be tested to assess integration issues, power requirements, crew operations, and technology I subsystem performance. One potential subsystem for early habitats is supplemental food production. Fresh foods, such as vegetables and small fruits, could be harvested on a continuous basis to improve the diet and quality of life. The system would need to fit conveniently into the habitat and not interfere with other components or operations. To test this concept, a plant growing "atrium" was designed to surround the lift between the lower and upper modules of the Deep Space Habitat and deployed at NASA DRA TS test site in 2011 and at NASA's JSC in 20I2. With this approach, un-utilized volume provided an area for vegetable growth. For the 20 II test, mizuna, lettuce, basil, radish and sweetpotato plants were grown in trays using commercially available red I blue LED light fixtures. Seedlings were transplanted into the atrium and cared for by the crew. Plants were then harvested two weeks later following completion of the test. In 20I2, mizuna, lettuce, and radish plants were grown similarly but under flat panel banks of white LEDs. In 20 I2, the crew went through plant harvesting, including sanitizing the leafy greens and radishes, which were then consumed. Each test demonstrated successful production of vegetables within a functional hab module. The round red I blue LEDs for the 20Il test lighting cast a purple light in the hab, and were less uniformly distributed over the plant trays. The white LED panels provided broad spectrum light with more uniform distribution. Post-test questionnaires showed that the crew enjoyed tending and consuming the plants, and that the white LED light in 2012 provided welcome extra light for the main hab area

    Clostridioides difficile binary toxin binding component (cdtb) increases virulence in a hamster model

    Get PDF
    Background Clostridioides difficile is the leading cause of hospital-acquired gastrointestinal infection, in part due to the existence of binary toxin (CDT)-expressing hypervirulent strains. Although the effects of the CDT holotoxin on disease pathogenesis have been previously studied, we sought to investigate the role of the individual components of CDT during in vivo infection. Methods To determine the contribution of the separate components of CDT during infection, we developed strains of C difficile expressing either CDTa or CDTb individually. We then infected both mice and hamsters with these novel mutant strains and monitored them for development of severe illness. Results Although expression of CDTb without CDTa did not induce significant disease in a mouse model of C difficile infection, we found that complementation of a CDT-deficient C difficile strain with CDTb alone restored virulence in a hamster model of C difficile infection. Conclusions Overall, this study demonstrates that the binding component of C difficile binary toxin, CDTb, contributes to virulence in a hamster model of infection

    A functional siRNA screen identifies genes modulating angiotensin II-mediated EGFR transactivation

    No full text
    The angiotensin type 1 receptor (AT1R) transactivates the epidermal growth factor receptor (EGFR) to mediate cellular growth, however, the molecular mechanisms involved have not yet been resolved. To address this, we performed a functional siRNA screen of the human kinome in human mammary epithelial cells that demonstrate a robust AT1R-EGFR transactivation. We identified a suite of genes encoding proteins that both positively and negatively regulate AT1R-EGFR transactivation. Many candidates are components of EGFR signalling networks, whereas others, including TRIO, BMX and CHKA, have not been previously linked to EGFR transactivation. Individual knockdown of TRIO, BMX or CHKA attenuated tyrosine phosphorylation of the EGFR by angiotensin II stimulation, but this did not occur following direct stimulation of the EGFR with EGF, indicating that these proteins function between the activated AT1R and the EGFR. Further investigation of TRIO and CHKA revealed that their activity is likely to be required for AT1R-EGFR transactivation. CHKA also mediated EGFR transactivation in response to another G protein-coupled receptor (GPCR) ligand, thrombin, indicating a pervasive role for CHKA in GPCR-EGFR crosstalk. Our study reveals the power of unbiased, functional genomic screens to identify new signalling mediators important for tissue remodelling in cardiovascular disease and cancer.This work was supported by the Australian National Health and Medical Research Council project grants [grant numbers 472640, 1024726 to W.G.T. and R.D.H]; and a project grant awarded to R.D.H, funded in Australia by the Captain Courageous Foundation (http://www.captaincourageousfoundation.com). R.D.H also holds an NHMRC senior research fellowship [grant number 1022402]

    Targeting HOX transcription factors in prostate cancer

    Get PDF
    YesBackground: The HOX genes are a family of transcription factors that help to determine cell and tissue identity during early development, and which are also over-expressed in a number of malignancies where they have been shown to promote cell proliferation and survival. The purpose of this study was to evaluate the expression of HOX genes in prostate cancer and to establish whether prostate cancer cells are sensitive to killing by HXR9, an inhibitor of HOX function. Methods: HOX function was inhibited using the HXR9 peptide. HOX gene expression was assessed by RNA extraction from cells or tissues followed by quantitative PCR, and siRNA was used to block the expression of the HOX target gene, cFos. In vivo modelling involved a mouse flank tumour induced by inoculation with LNCaP cells. Results: In this study we show that the expression of HOX genes in prostate tumours is greatly increased with respect to normal prostate tissue. Targeting the interaction between HOX proteins and their PBX cofactor induces apoptosis in the prostate cancer derived cell lines PC3, DU145 and LNCaP, through a mechanism that involves a rapid increase in the expression of cFos, an oncogenic transcription factor. Furthermore, disrupting HOX/PBX binding using the HXR9 antagonist blocks the growth of LNCaP tumours in a xenograft model over an extended period. Conclusion: Many HOX genes are highly over-expressed in prostate cancer, and prostate cancer cells are sensitive to killing by HXR9 both in vitro and in vivo. The HOX genes are therefore a potential therapeutic target in prostate cancer.The authors gratefully acknowledge the support of the Prostate Project charity (UK)

    Restriction of essential amino acids dictates the systemic metabolic response to dietary protein dilution

    Get PDF
    Dietary protein dilution, where protein is reduced and replaced by other nutrient sources without caloric restriction, promotes metabolic health via the hepatokine Fgf21. Here, the authors show that essential amino acids threonine and tryptophan are necessary and sufficient to induce these effects

    CYP2C19 pharmacogenetics in advanced cancer: compromised function independent of genotype

    Get PDF
    CYP2C19 is a drug-metabolising enzyme involved in the metabolism of a number of chemotherapeutic agents including cyclophosphamide. Variants of the CYP2C19 gene result in a loss of function polymorphism, which affects approximately 3% of the Caucasian population. These individuals are poor metabolisers (PM) of a wide range of medications including omeprazole (OMP). In healthy subjects PM can be identified through homozygous variant genotype. However, a discordance between CYP2C19 genotype and phenotype has been reported previously in a small study of cancer patients. To investigate whether CYP2C19 activity was decreased in patients with advanced cancer, CYP2C19 genotype was determined in 33 advanced cancer patients using PCR-RFLP analysis for the two important allelic variants (*2,681G>A and *3,636G>A) and the activity of the enzyme was evaluated using the CYP2C19 probe drug OMP. The activity of the drug-metabolising enzyme CYP2C19 was severely compromised in advanced cancer patients, resulting in a PM status in 37% of the patients who had normal genotype. This is significantly (P<0.0005) higher than that would be predicted from the genotypic status of these patients. There was no evidence of a correlation between compromised CYP2C19 activity and any of the proinflammatory cytokines or acute phase response proteins studied. However, there was preliminary evidence of an association between PM status and low body mass (P=0.03). There is increasing interest in using pharmacogenetics to ‘individualise medicine', however, the results of this study indicate that in a cancer population genotyping for CYP2C19 would significantly underestimate the number of phenotypic PM of drugs, such as cyclophosphamide, which may be metabolised by this enzyme

    CAR-T cell. the long and winding road to solid tumors

    Get PDF
    Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles
    corecore